Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in s...Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in serving as pH-responsive T1-T2^*dual-modal magnetic resonance(MR)imaging contrast agents.The released Mn^2+shortened T1 relaxation time,meanwhile the superparamagnetic Fe3O4 enhanced T2 contrast imaging.The release rate of Mn ions reaches 31.66%under the condition of pH=5.0,which is similar to tumor microenvironment and organelles.Cytotoxicity assays show that MnSiO3@Fe3O4@C NPs have minor toxicity,even at high concentrations.After intravenous injection of MnSiO3@Fe3O4@C NPs,a rapid contrast enhancement in tumors was achieved with a significant enhancement of 132%after 24 h of the administration.Moreover,a significant decreasement of 53.8%was witnessed in T2 MR imaging signal.It demonstrated that MnSiO3@Fe3O4@C NPs can act as both positive and negative MR imaging contrast agents.Besides,owing to the pH-responsive degradation of mesoporous MnSiO3,MnSiO3@Fe3O4@C NPs can also be used as potential drug systems for cancer theranostics.展开更多
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s...Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.展开更多
A novel magnetic electrochemical sensor was designed for determination of lead ions based on gold na- noparticles(AuNPs)@SiO2@Fe3O4/nitrogen-doped graphene(NG) composites functionalized with L-cysteine. The Au@SiO...A novel magnetic electrochemical sensor was designed for determination of lead ions based on gold na- noparticles(AuNPs)@SiO2@Fe3O4/nitrogen-doped graphene(NG) composites functionalized with L-cysteine. The Au@SiO2@Fe3O4/NG was synthesized by the electrostatic adsorption between AuNPs and SiO2-coated Fe304 NPs(SiO2@Fe304) and the amide bond between Au@SiO2@Fe3O4 and NG. L-Cysteine was successfully functionalized on the surface of Au@SiO2@Fe3O4/NG nanocomposites via the S--Au bond between L-cysteine and AuNPs. Owing to numerous active sites in L-cysteines and high conductivity of Au@SiO2@Fe3O4/NG composites, the pro- posed electrochemical sensor exhibited a well-distributed nanostructure and high responsivity toward Pb(II). The sensor linearly responded to Pb2+ concentration in the range of 5-80 μg/L with a detection limit of 0.6 μg/L, indicating that this L-cysteine functionalized Au@SiO2@Fe3O4/NG composite could be a promising candidate material for the detection of Pb2+.展开更多
基金supported by the National Natural Science Foundation of China(No.21571168)
文摘Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in serving as pH-responsive T1-T2^*dual-modal magnetic resonance(MR)imaging contrast agents.The released Mn^2+shortened T1 relaxation time,meanwhile the superparamagnetic Fe3O4 enhanced T2 contrast imaging.The release rate of Mn ions reaches 31.66%under the condition of pH=5.0,which is similar to tumor microenvironment and organelles.Cytotoxicity assays show that MnSiO3@Fe3O4@C NPs have minor toxicity,even at high concentrations.After intravenous injection of MnSiO3@Fe3O4@C NPs,a rapid contrast enhancement in tumors was achieved with a significant enhancement of 132%after 24 h of the administration.Moreover,a significant decreasement of 53.8%was witnessed in T2 MR imaging signal.It demonstrated that MnSiO3@Fe3O4@C NPs can act as both positive and negative MR imaging contrast agents.Besides,owing to the pH-responsive degradation of mesoporous MnSiO3,MnSiO3@Fe3O4@C NPs can also be used as potential drug systems for cancer theranostics.
基金supported by the Tianjin Committee of Science and Technology (No.14JCZDJC32400)Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
文摘Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.
基金Supported by the National Natural Science Foundation of China(No.31101284), the Graduate Research and Innovation Foundation of Chongqing, China(No.CYS17017), the Fundamental Research Funds for the Central Universities of China (Nos. CQDXWL-2012-034, CQDXWL-2012-035, CDJPY12220001) and the Chongqing University Student Research Training Program, China(Nos.CQU-SRTP-2015497, CQU-SRTP-2015502).
文摘A novel magnetic electrochemical sensor was designed for determination of lead ions based on gold na- noparticles(AuNPs)@SiO2@Fe3O4/nitrogen-doped graphene(NG) composites functionalized with L-cysteine. The Au@SiO2@Fe3O4/NG was synthesized by the electrostatic adsorption between AuNPs and SiO2-coated Fe304 NPs(SiO2@Fe304) and the amide bond between Au@SiO2@Fe3O4 and NG. L-Cysteine was successfully functionalized on the surface of Au@SiO2@Fe3O4/NG nanocomposites via the S--Au bond between L-cysteine and AuNPs. Owing to numerous active sites in L-cysteines and high conductivity of Au@SiO2@Fe3O4/NG composites, the pro- posed electrochemical sensor exhibited a well-distributed nanostructure and high responsivity toward Pb(II). The sensor linearly responded to Pb2+ concentration in the range of 5-80 μg/L with a detection limit of 0.6 μg/L, indicating that this L-cysteine functionalized Au@SiO2@Fe3O4/NG composite could be a promising candidate material for the detection of Pb2+.