Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemic...Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemically bonded Mn0.5Cd_(0.5)S/BiOBr S-scheme heterostructure with oxygen vacancies is ingeniously developed through a facile in-situ solvothermal synthesis.The designed Mn0.5Cd_(0.5)S/BiOBr heterojunction exhibits eminently reinforced photo-activity for destruction of tetracycline hydrochloride and Cr(VI)as compared with its individual components.This substantial photo-redox performance amelioration is benefitted from the creation of an intense internal electric field(IEF)via supplying powerful driving force and migration highway by interfacial chemical bond to foster the S-scheme electron/hole disintegration.More intriguingly,the IEF at the hetero-interface drives the fast consumption of the photo-induced holes in Mn0.5Cd_(0.5)S by the photoelectrons from BiOBr,profoundly boosting the enrichment of active photo-carriers and sparing the photo-corrosion of Mn0.5Cd_(0.5)S.Furthermore,Mn0.5Cd_(0.5)S/BiOBr with exceptional anti-interference property can work efficiently in real water matrices.Multiple uses of the recycled Mn0⋅5Cd0⋅5S/BiOBr evidence its prominent robustness and stability.This achievement indicates the vast potential of chemically bonded S-scheme photosystems with structural defects in the design of photo-responsive materials for effective wastewater treatment.展开更多
基金supported by the National Natural Science Foundation of China(U1809214)the Natural Science Foundation of Zhejiang Province(LY20E080014 and LTGN23E080001)the Science and Technology Project of Zhoushan(2022C41011).
文摘Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemically bonded Mn0.5Cd_(0.5)S/BiOBr S-scheme heterostructure with oxygen vacancies is ingeniously developed through a facile in-situ solvothermal synthesis.The designed Mn0.5Cd_(0.5)S/BiOBr heterojunction exhibits eminently reinforced photo-activity for destruction of tetracycline hydrochloride and Cr(VI)as compared with its individual components.This substantial photo-redox performance amelioration is benefitted from the creation of an intense internal electric field(IEF)via supplying powerful driving force and migration highway by interfacial chemical bond to foster the S-scheme electron/hole disintegration.More intriguingly,the IEF at the hetero-interface drives the fast consumption of the photo-induced holes in Mn0.5Cd_(0.5)S by the photoelectrons from BiOBr,profoundly boosting the enrichment of active photo-carriers and sparing the photo-corrosion of Mn0.5Cd_(0.5)S.Furthermore,Mn0.5Cd_(0.5)S/BiOBr with exceptional anti-interference property can work efficiently in real water matrices.Multiple uses of the recycled Mn0⋅5Cd0⋅5S/BiOBr evidence its prominent robustness and stability.This achievement indicates the vast potential of chemically bonded S-scheme photosystems with structural defects in the design of photo-responsive materials for effective wastewater treatment.