期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MOFs转化的多孔Mn_(1.8)Fe1.2O_(4)活化过一硫酸盐降解罗丹明B的研究 被引量:1
1
作者 尹格格 陈洋 +1 位作者 魏新宇 吴丹 《沈阳化工大学学报》 CAS 2021年第2期139-145,共7页
以金属有机骨架(MOFs)为前驱体,制备具有多孔结构的活化剂Mn_(1.8)Fe1.2O_(4).以罗丹明B(RhB)为目标污染物,考察Mn_(1.8)Fe1.2O_(4)活化过一硫酸盐(PMS)降解有机污染物的性能.系统研究了Mn_(1.8)Fe1.2O_(4)制备条件、活化剂投加量、PMS... 以金属有机骨架(MOFs)为前驱体,制备具有多孔结构的活化剂Mn_(1.8)Fe1.2O_(4).以罗丹明B(RhB)为目标污染物,考察Mn_(1.8)Fe1.2O_(4)活化过一硫酸盐(PMS)降解有机污染物的性能.系统研究了Mn_(1.8)Fe1.2O_(4)制备条件、活化剂投加量、PMS浓度、降解温度等因素对降解RhB的影响规律.实验结果表明:在Mn_(1.8)Fe1.2O_(4)煅烧温度为500℃,活化剂投加量为0.05 g,PMS浓度为0.3mmol/L,降解温度为25℃时,降解0.1 L初始浓度为20μmol/L的RhB溶液30 min后,其脱色率达到98.8%,降解效果最佳.由捕获剂实验可知,·SO_(4)-和·OH在RhB的降解过程中起主要作用. 展开更多
关键词 MOFS 硫酸根自由基 mn_(1.8)fe1.2o_(4) RHB
下载PDF
Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3) coated Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) for enhancing electrochemical performance of lithium-ion batteries 被引量:1
2
作者 LAI Xiang-wan HU Guo-rong +3 位作者 PENG Zhong-dong CAO Yan-bing DU Ke LIU Ye-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1463-1478,共16页
Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle ... Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM. 展开更多
关键词 surface modification Li-rich cathode material electrochemical performance Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3) Li_(1.2)Ni_(0.13)Co_(0.13)mn_(0.54)O_(2) Li-ion batteries
下载PDF
Fe/Ni比对Li_(1.2)Fe_(0.2-x)Ni_(0.1+x)Mn_(0.5)O_(2)纳米颗粒电化学性能的影响
3
作者 朱志红 肖雨刚 《化工技术与开发》 CAS 2021年第9期34-40,共7页
通过调整化学组成x(x为0、0.05、0.1),采用自蔓延燃烧合成了不同Fe/Ni比的前驱体,经700℃高温煅烧合成出纳米Li_(1.2)Fe_(0.2-x)Ni_(0.1+x)Mn_(0.5)O_(2)材料。XRD分析表明随着Fe/Ni比增大,材料的晶体结构由α-NaFeO_(2)层状结构向单斜C... 通过调整化学组成x(x为0、0.05、0.1),采用自蔓延燃烧合成了不同Fe/Ni比的前驱体,经700℃高温煅烧合成出纳米Li_(1.2)Fe_(0.2-x)Ni_(0.1+x)Mn_(0.5)O_(2)材料。XRD分析表明随着Fe/Ni比增大,材料的晶体结构由α-NaFeO_(2)层状结构向单斜C2/m结构过渡,晶系对称性降低。x=0.05时(Fe/Ni比为1:1),Li_(1.2)Fe_(0.2-x)Ni_(0.1+x)Mn_(0.5)O_(2)纳米材料(LFNMO-1F1N)具有良好的α-NaFeO2层状结构和更完整的层状程度,晶粒尺寸为10.96nm。SEM分析表明LFNMO-1F1N为分布均匀的纳米颗粒,粒径范围38~62 nm。恒电流测试结果表明,在0.1C倍率下,LFNMO-1F1N的首次可逆容量高达258.9 mAh·g^(-1),远高于LFNMO-2F1N(191.6 mAh·g^(-1))和LFNMO-1F2N的可逆容量(155 mAh·g^(-1)),在2C倍率下的可逆容量仍有138.4 mAh·g^(-1)。在1C倍率下充放电循环100次后,可逆容量仍有122.6mAh·g^(-1),保持率为78.6%。研究结果表明,当Fe/Ni比为1:1时,Li_(1.2)Fe_(0.15)Ni_(0.15)Mn_(0.5)O_(2)纳米颗粒具有最大的可逆比容量、最佳倍率与循环性能。 展开更多
关键词 富锂锰基固溶体 Li_(1.2)Fe_(0.2-x)Ni_(0.1+x)mn_(0.5)O_(2) Fe/Ni比 自蔓延燃烧
下载PDF
LiZr_(2)(PO_(4))_(3)surface coating towards stable layer structure Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)cathode materials with long cycle performance
4
作者 Hao Yang Jie Wang +4 位作者 Changsheng Xu Kewei Wu Fangfang Zou Xuebu Hu Zhongli Hu 《Nano Research》 SCIE EI CSCD 2023年第2期2373-2382,共10页
Li-rich manganese-based materials are considered to be the mainstream cathode materials for next-generation lithium-ion batteries due to high discharge capacity and low cost,but poor cycle life and high temperature pe... Li-rich manganese-based materials are considered to be the mainstream cathode materials for next-generation lithium-ion batteries due to high discharge capacity and low cost,but poor cycle life and high temperature performance limit their development.Herein,LiZr_(2)(PO_(4))_(3)(LZPO)is coated on the surface of spherical Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)(LMNCO)material by a simple wet chemical method.The LZPO layer not only has the function of traditional coating layer to inhibit the occurrence of side reactions between electrolyte and LMNCO surface but also promotes the formation of spinel phase in the layered structure,increases the content of lattice oxygen,and reduces the content of absorbed oxygen.Thus,LZPO coated LMNCO has a more stable layered structure during cycling compared pure LMNCO,which improves effectively its long life and high temperature performance.The capacity loss rate of LZPO coated LMNCO is only 16.2%and 11.9%after 350 cycles at 25℃and 200 cycles at 50℃,respectively.Moreover,the capacity retention rate of the full cell composed of LZPO coated LMNCO and graphite is 70.7%after 200 cycles at 1.0 C.The coating layer toward stable surface structure can provide an idea for the modification of cathode materials,especially for Li-rich manganese-based materials. 展开更多
关键词 Li_(1.2)mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) LiZr_(2)(PO_(4))_(3) layered structure cycle life high temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部