期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mn-based MXene with high lithium-ion storage capacity
1
作者 Yanyan Wu Dongqing Liu +6 位作者 Xiaonan Wang Usman Ghani Muhammad Asim Mushtaq Jinfeng Yang Huarui Sun Panagiotis Tsiakaras Xingke Cai 《Nano Research》 SCIE EI CSCD 2024年第5期4181-4191,共11页
3d-transition metal(Fe,Co,Ni,and Mn)-based MXene materials have been predicted to demonstrate exceptional electrochemical performance because of their good electrical conductivity and the presence of metallic atoms wi... 3d-transition metal(Fe,Co,Ni,and Mn)-based MXene materials have been predicted to demonstrate exceptional electrochemical performance because of their good electrical conductivity and the presence of metallic atoms with multiple charge states.However,until now,there have been no reports on MXenes based on Fe,Co,Ni,and Mn,due to the lack of 3d-metal-layered precursors.Herein,we successfully synthesized the first 3d-transition metal-based MXenes,Mn_(2)CT_(x) by exfoliating a layered precursor derived from the anti-perovskite bulk Mn3GaC.The as-prepared Mn_(2)CT_(x) MXene nanosheets were employed as anode materials in lithium-ion batteries,which exhibited stable storage capacity of 764.7 mAh·g^(-1) at 0.5 C,placing its storage capacities at an upper-middle level compared with other reported MXene materials as well as other Mn-based anode materials.Overall,this study opens a new avenue for MXene research by synthesizing 3d-transition metal-based MXenes for electrochemical applications. 展开更多
关键词 mn_(3)gac mn_(2)CT_(x) MXenes lithium-ion battery anode materials negative fading capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部