The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ...The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.展开更多
We present measurements of the 2p-3d transition opacity of a hot molybdenum-scandium sample with nearly half-vacant molybdenum M-shell configurations.A plastic-tamped molybdenum-scandium foil sample is radiatively hea...We present measurements of the 2p-3d transition opacity of a hot molybdenum-scandium sample with nearly half-vacant molybdenum M-shell configurations.A plastic-tamped molybdenum-scandium foil sample is radiatively heated to high temperature in a compact D-shaped gold Hohlraum driven by∼30 kJ laser energy at the SG-100 kJ laser facility.X rays transmitted through the molybdenum and scandium plasmas are diffracted by crystals and finally recorded by image plates.The electron temperatures in the sample in particular spatial and temporal zones are determined by the K-shell absorption of the scandium plasma.A combination of the IRAD3D view factor code and the MULTI hydrodynamic code is used to simulate the spatial distribution and temporal behavior of the sample temperature and density.The inferred temperature in the molybdenum plasma reaches a average of 138±11 eV.A detailed configuration-accounting calculation of the n=2–3 transition absorption of the molybdenum plasma is compared with experimental measurements and quite good agreement is found.The present measurements provide an opportunity to test opacity models for complicated M-shell configurations.展开更多
Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu...Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).展开更多
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ...The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.展开更多
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical...To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
基金the National Natural Science Foundation of China(Nos.42176087,42322605)the Laoshan Laboratory(No.LSKJ202204100)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021206)。
文摘The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.
基金supported by the National Nature Science Foundation of China(Grant Nos.12335015,12375238,12374261,11734013,and 11704350)the Presidential Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2017010)+2 种基金the CAEP Foundation(Grant No.CX2019023)the Science Challenge Project(Grant Nos.TZ2018001 and TZ2018005)the National Key R&D Program of China(Grant No.2017YFA0403200).
文摘We present measurements of the 2p-3d transition opacity of a hot molybdenum-scandium sample with nearly half-vacant molybdenum M-shell configurations.A plastic-tamped molybdenum-scandium foil sample is radiatively heated to high temperature in a compact D-shaped gold Hohlraum driven by∼30 kJ laser energy at the SG-100 kJ laser facility.X rays transmitted through the molybdenum and scandium plasmas are diffracted by crystals and finally recorded by image plates.The electron temperatures in the sample in particular spatial and temporal zones are determined by the K-shell absorption of the scandium plasma.A combination of the IRAD3D view factor code and the MULTI hydrodynamic code is used to simulate the spatial distribution and temporal behavior of the sample temperature and density.The inferred temperature in the molybdenum plasma reaches a average of 138±11 eV.A detailed configuration-accounting calculation of the n=2–3 transition absorption of the molybdenum plasma is compared with experimental measurements and quite good agreement is found.The present measurements provide an opportunity to test opacity models for complicated M-shell configurations.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1405500)the National Natural Science Foundation of China (Grant Nos.52372257 and 52072188)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT-15R23)the Zhejiang Provincial Science and Technology Innovation Team (Grant No.2021R01004)。
文摘Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).
基金financially supported by the National Natural Science Foundation of China (No.51964046)。
文摘The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.
基金supported by the National Key R&D Program of China(No.2022YFB3705402)。
文摘To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.