The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas...The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.展开更多
文摘The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively.