Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
Located in the East Qinling molybdenum metallogenic belt on the southern margin of the North China craton, the Nannihu Mo (-W) orefield comprising Nannihu, Sandaozhuang, and Shangfanggou deposits is a superlarge skarn...Located in the East Qinling molybdenum metallogenic belt on the southern margin of the North China craton, the Nannihu Mo (-W) orefield comprising Nannihu, Sandaozhuang, and Shangfanggou deposits is a superlarge skarn-porphyry Mo (-W) orefield in the world. Re-Os dating was performed of six molybdenite samples from the Mo deposits in the Nannihu Mo orefield with inductively coupled plasma mass spectrometry (ICP-MS). The results show that the Re-Os model ages are 145.8±2.1-141.8±2.1 Ma for the Nannihu deposit, 145.4±2.0-144.5±2.2 Ma (averaging 145.0±2.2 Ma) for the Sandaozhuang deposit and 145.8±2.1-143.8±2.1 Ma (averaging 144.8±2.1 Ma) for the Shangfanggou deposit; dating of the six samples yields an isochron age of 141.5±7.8 Ma (2σ), which accurately determines the timing of mineralization. The results also suggest that the ore-forming materials were mainly derived from the lower crust, mixed with minor mantle components. These Mo deposits were formed during the transition of the Mesozoic tectonic regime in eastern China, and its mineralization was a part of the Late Mesozoic large-scale mineralization in that region.展开更多
The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinia...The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.展开更多
The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr...The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial ^87Sr/^86Sr ratios of 0.70418-0.70952, ENd(t) values of 1.3 to 2.1 (t=143 Ma), ^206Pb/^204Pb ratios of 19.191-19.573, ^207Tpb/^204pb ratios of 15.551-15.572, and ^208Pb/^204Pb ratios of 38.826-39.143. The monzogranite has initial 87Sr/86Sr ratios of 0.70293-0.71305, εNd(t) values of 1.1 to 2.0 (t=-147 Ma), ^206Pb/^204pb ratios of 19.507-20.075, ^207Pb/^204Pb ratios of 15.564-15.596, and ^208Pb/^204Pb ratios of 39.012-39.599. The calculated Nd model ages (TDM) for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma, respectively. The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range. The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust. The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting, and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.展开更多
Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and...Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.展开更多
The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I),...The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.展开更多
Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo)deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Rang...Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo)deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Range(NSGXR).Zircon U-Pb dating suggests that the monzogranite,ore-bearing granodiorite porphyry,diorite porphyry,and granite porphyry in the deposit were emplaced at 179.5±1.6,148.9±0.9,146.1±1.3,and 142.2±1.5 Ma,respectively.The Re-Os dating of molybdenite yielded an isochron age of 146.9±2.3 Ma(MSWD=0.27).The Jurassic adakitic monzogranite and granodiorite porphyry are characterized by high SiO_(2)and Na_(2)O contents,low K_(2)O/Na_(2)O ratios,low Mg O,Cr,and Ni contents,low zirconεHf(t)values relative to depleted mantle,and relatively high Th contents.They were produced by partial melting of a subducted oceanic slab,with involvement of marine sediments in the magma source and limited interaction with mantle peridotites during magma ascent.The Late Jurassic diorite porphyry is characterized by moderate SiO_(2) contents,high Mg O,Cr,and Ni contents,and positive dominatedεHf(t)values,indicating it was produced by partial melting of a subduction-modified lithospheric mantle wedge and underwent limited crustal contamination during magma ascent.The early Early Cretaceous adakitic granite porphyry shows high SiO_(2) and K_(2)O contents and K_(2)O/Na_(2)O ratios,low Mg O,Cr,and Ni contents,enriched Sr-Nd isotopic compositions,and slightly positive zirconεHf(t)values,suggesting it was produced by partial melting of thickened mafic lower crust.The NSGXR experienced a tectonic history that involved flat-slab subduction(200-160 Ma),and tearing and collapse(150-145 Ma)of the Mongol-Okhotsk oceanic lithosphere.The period of magmatic quiescence from ca.160 to 150 Ma was a response to flat-slab subduction of the Mongol-Okhotsk oceanic lithosphere.Crustal thickening in the NSGXR(145-133 Ma)was due to the collision between the Amuria Block and the Siberian Craton.展开更多
The Qulong porphyry Cu-Mo deposit,generated in the Miocene post-collisional extension environment of the Gangdese Copper(Molybdenum)Metallogenic Belt,is one of the largest porphyry Cu deposits in China.This study repo...The Qulong porphyry Cu-Mo deposit,generated in the Miocene post-collisional extension environment of the Gangdese Copper(Molybdenum)Metallogenic Belt,is one of the largest porphyry Cu deposits in China.This study reports the noble gas isotopic compositions of volatiles released from fluid inclusion reserved in pyrite from the Qulong deposit.3He/4 He and 40Ar/36Ar ratios range from 0.54 to 1.015 Ra and 300-359,respectively.Concentrations of 4 He and 40Ar range from 1.77 to 2.62×10^(-8)cm^(3)STP and 1.7-34×10^(-8)cm^(3)STP,respectively.The isotopic composition of noble gases indicates that the ore-forming fluids of the Qulong Cu-Mo deposit were a mixture of fluid containing mantle component,which is exsolved from the porphyry magma,and crustal fluid characterized by atmospheric Ar and crustal radiogenic He.Theδ34S values of pyrite and molybdenite range from-0.52‰to 0.31‰,with an average of-0.12‰,indicating a magmatic origin.More mantle components were involved in the Cu-Mo deposit than in the Mo-Cu deposit in the Qulong-Jiama ore-district.展开更多
The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The pe...The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.展开更多
Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks ...Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.展开更多
The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusio...The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusions.Potassic,phyllic,and propylitic alteration zones develop from center to edge.In this paper,we present zircon LA–ICP–MS U–Pb ages,zircon Hf isotopic compositions,and whole-rock geochemistry of the ore-bearing granodiorite porphyries from the Xiaokele Cu(–Mo)deposit.Zircon U–Pb dating suggests that the Xiaokele granodiorite porphyries were emplaced at 148.8±1.1 Ma(weighted-mean age;n=14).The Xiaokele granodiorite porphyries display high SiO2,Al2O3,Sr,and Sr/Y,low K2O/Na2O,MgO,Yb,and Y,belonging to high-SiO2 adakites produced by partial melting of the subducted oceanic slab.Marine sediments were involved in the magma source of the Xiaokele granodiorite porphyries,as indicated by enriched Sr–Nd isotopic compositions(eNd(-t)=-1.17–-0.27),low positive zircon eHf(t)values(0.4–2.2),and high Th contents(4.06–5.20).The adakitic magma subsequently interacted with the mantle peridotites during ascent through the mantle wedge.The Xiaokele granodiorite porphyries were derived from slab melting during the southward subduction of the Mongol–Okhotsk Ocean.展开更多
The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution because of their close association with porphyry Mo mineralization. Here, we present ...The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution because of their close association with porphyry Mo mineralization. Here, we present a study using petrogeochemistry data to constrain the petrogenesis of the Xiaofan granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations show that the Xiaofan pluton mainly consists of porphyritic granite. The Xiaofan granites have high SiO2 contents of 74.29 wt%-76.07 wt% (average: 75.18 wt%), A1203 contents of 11.66 wt%-12.83 wt% (average: 12.13 wt%), and K20 contents of 5.37 wt%-7.90 wt% (average: 6.86 wt%) and low MgO (0.06 wt%-0.16 wt%), TiO2 (0.09 wt%-0.10 wt%), and P205 (0.047 wt%-0.103 wt%) contents. They are enriched in Rb, U, K and Hf but depleted in Ba, Nb, Ta, Sr and Ti. By geochemical and mineralogical features, we propose that the Xiaofan granites belong to A-type type granite and dominantly sourced from the crust. The granites from the Xiaofan Mo deposit may have formed in a post-collision extensional setting.展开更多
We studied the fluid inclusions of the Jiguanshan Mo deposit in China,which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt.The irregular Mo ore body with various types of hydrothermal ...We studied the fluid inclusions of the Jiguanshan Mo deposit in China,which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt.The irregular Mo ore body with various types of hydrothermal veinlets is hosted by Late Jurassic granite porphyry.Intense hydrothermal alterations in the deposit from the core to margin are silicification-potassium feldspar alteration,pyrite-quartz-sericite-fluorite alteration,and propylitic alteration.Based on the mineral assemblages and crosscutting relationships of ore veins,the ore-forming process were divided into three stages and two substages:quartz-pyrite veins(stage I)associated with potassic alteration;quartz-molybdenite-chalcopyrite-pyrite veins(substage Ⅱ-1)and quartz-molybdenite-fluorite veins(substage Ⅱ-2)associated with phyllic alteration;and fluorite-quartz-carbonate veins(stage Ⅲ)with carbonation.Five majorfluid inclusions(FIs)types were distinguished in the quartz associated with oxide and sulfide minerals,i.e.polyphase brine(Pb-type),opaque-bearing brine(Ob-type),solid halite(S-type),two-phase aqueous(A-type),and vapor(Vtype)inclusions.The FIs of stage I were composed of liquid-rich S-,A-,and V-type FIs with homogenization temperatures and salinities of 490 to 511℃ and 8.9 to 56.0 wt%NaCl equiv.,respectively.The FIs of substage Ⅱ-1 are composed of Pb-,Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 352 to 460℃ and 3.7 to 46.1 wt%NaCl equiv,respectively.The FIs of substage Ⅱ-2 are Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 234 to309°C and 3.7 to 39.2 wt%NaCl equiv,respectively.The FIs of stage Ⅲ are A-type FIs with homogenization temperatures and salinities of 136 to 172℃ and 1.1 to 8.9 wt%NaCl equiv,respectively.Fluid boiling,which resulted in the precipitation of sulfides,occurred in stages I andⅡ.The initial ore-forming fluids of the Jiguanshan deposit had high temperature,high salinity,and belonged to an F-rich NaCl±KCl-H2O system.The fluids gradually evolved to low temperature,low salinity,and belonged to a NaCl-H2O system.Studies of the hydrogen and oxygen isotope compositions of quartz(δ^18OH2O=-7.3 to 6.3%,δDH2O=-104.3 to-83.3%)show that the ore-formingfluids gradually evolved from magmatic water to meteoric water.展开更多
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregu...The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO2-CH4 single phase FIs,2) CO2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO2- and CH4-rich FIs of the CO2-CH4-H2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO2-rich FIs of the CO2-H2O-NaCl system and liquid-rich FIs of the H2O-NaCl system.For the CO2-CH4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm^3 to 0.8 g/cm^3;for two- or three-phase FIs of the CO2-CH4-H2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm^3 to 1.0 g/cm^3,respectively.For CO2-H2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm^3 to 1.0 g/cm^3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO2 and CH4 contents and reducibility(indicated by the presence of CH4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The 〈S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the 〈JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.〈534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.展开更多
The Suoerkuduke Cu (Mo) deposit, in the same metallogenic belt with Xilekuduke Cu-Mo deposit, is located in the Armantai island arc belt on the northern margin of East Junggar, Northwest China. Rhenium and osmium is...The Suoerkuduke Cu (Mo) deposit, in the same metallogenic belt with Xilekuduke Cu-Mo deposit, is located in the Armantai island arc belt on the northern margin of East Junggar, Northwest China. Rhenium and osmium isotopic analysis of seven molybdenite samples from the deposit was used to determine the age of mineralization. A seven-point isochron age of 317.7±7.6 Ma, which is consistent, within analytical error, with the average model age of 323.3±1.9 Ma indicates that this deposit was formed at transitional period between the Early and Late Carboniferous. This age is obviously later than that of the Lower Devonian Tuoranggekuduke Formation acting as the wall rock but contemporaneous with the early stage of plutonism (330-268 Ma) in East Junggar. Based on the characteristics of mineralization age and tectonic setting of many typical deposits on the northern margin of East Junggar, we proposed that the mineralization age of Suoerkuduke deposit is a key period of East Junggar for the tectonic regime transforming from compression to extension and also the time when granitoids and deposits widely spread in this area. Mineralization and formation of skarn in this deposit are closely related to felsic-intermediate magmatism. The distinct characteristic from typical skarn-type deposits is that the metallogenic parent intrusion is a huge batholith in the depth. The Cu (Mo) mineralization, moyitc, and granite porphyry are all derived products of the batholith.展开更多
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed ...The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.展开更多
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
文摘Located in the East Qinling molybdenum metallogenic belt on the southern margin of the North China craton, the Nannihu Mo (-W) orefield comprising Nannihu, Sandaozhuang, and Shangfanggou deposits is a superlarge skarn-porphyry Mo (-W) orefield in the world. Re-Os dating was performed of six molybdenite samples from the Mo deposits in the Nannihu Mo orefield with inductively coupled plasma mass spectrometry (ICP-MS). The results show that the Re-Os model ages are 145.8±2.1-141.8±2.1 Ma for the Nannihu deposit, 145.4±2.0-144.5±2.2 Ma (averaging 145.0±2.2 Ma) for the Sandaozhuang deposit and 145.8±2.1-143.8±2.1 Ma (averaging 144.8±2.1 Ma) for the Shangfanggou deposit; dating of the six samples yields an isochron age of 141.5±7.8 Ma (2σ), which accurately determines the timing of mineralization. The results also suggest that the ore-forming materials were mainly derived from the lower crust, mixed with minor mantle components. These Mo deposits were formed during the transition of the Mesozoic tectonic regime in eastern China, and its mineralization was a part of the Late Mesozoic large-scale mineralization in that region.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB421007)the Science and Technology Leading Talents Training Plan Program of Yunnan Province (Grant No.2013HA001)
文摘The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.
基金part of the ongoing project "Superimposed tectonic activities and large-scale oreforming processes of the Hinggan-Mongolia Orogenic Belt"financially supported by the State Basic Research Program of China(2013CB429805)
文摘The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite. Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial ^87Sr/^86Sr ratios of 0.70418-0.70952, ENd(t) values of 1.3 to 2.1 (t=143 Ma), ^206Pb/^204Pb ratios of 19.191-19.573, ^207Tpb/^204pb ratios of 15.551-15.572, and ^208Pb/^204Pb ratios of 38.826-39.143. The monzogranite has initial 87Sr/86Sr ratios of 0.70293-0.71305, εNd(t) values of 1.1 to 2.0 (t=-147 Ma), ^206Pb/^204pb ratios of 19.507-20.075, ^207Pb/^204Pb ratios of 15.564-15.596, and ^208Pb/^204Pb ratios of 39.012-39.599. The calculated Nd model ages (TDM) for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma, respectively. The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range. The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust. The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting, and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.
基金the Postdoctoral Science Foundation of China (No. 2018M630203)National Natural Science Foundation of China (Grant No. 41502090)
文摘Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.
基金funded by the National Key R&D Plan (Nos. 2017YFC0601403 and 2016YFC0600106)the National Natural Science Foundation of China (No. 41272110)the basic research program of the First Institute of Oceanography (No. 2015T02)
文摘The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.
基金funded by the Natural Science Foundation of Jilin Province(No.20180101089JC)Key Projects of Science and Technology Development Plan of Jilin Province(No.20100445)+5 种基金National Key R&D Program of China(2017YFC0601304)the Natural Science Foundation of Liaoning Province(2020-BS-258)the Department of Education of Liaoning Province(LJ2020JCL010)a Discipline Innovation Team Project of Liaoning Technical University(LNTU20TD-14)Graduate Innovation Research Project of Jilin University(Grant NO.101832020CX201)Heilongjiang Research Project of Land and Resources(201605,201704)。
文摘Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo)deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Range(NSGXR).Zircon U-Pb dating suggests that the monzogranite,ore-bearing granodiorite porphyry,diorite porphyry,and granite porphyry in the deposit were emplaced at 179.5±1.6,148.9±0.9,146.1±1.3,and 142.2±1.5 Ma,respectively.The Re-Os dating of molybdenite yielded an isochron age of 146.9±2.3 Ma(MSWD=0.27).The Jurassic adakitic monzogranite and granodiorite porphyry are characterized by high SiO_(2)and Na_(2)O contents,low K_(2)O/Na_(2)O ratios,low Mg O,Cr,and Ni contents,low zirconεHf(t)values relative to depleted mantle,and relatively high Th contents.They were produced by partial melting of a subducted oceanic slab,with involvement of marine sediments in the magma source and limited interaction with mantle peridotites during magma ascent.The Late Jurassic diorite porphyry is characterized by moderate SiO_(2) contents,high Mg O,Cr,and Ni contents,and positive dominatedεHf(t)values,indicating it was produced by partial melting of a subduction-modified lithospheric mantle wedge and underwent limited crustal contamination during magma ascent.The early Early Cretaceous adakitic granite porphyry shows high SiO_(2) and K_(2)O contents and K_(2)O/Na_(2)O ratios,low Mg O,Cr,and Ni contents,enriched Sr-Nd isotopic compositions,and slightly positive zirconεHf(t)values,suggesting it was produced by partial melting of thickened mafic lower crust.The NSGXR experienced a tectonic history that involved flat-slab subduction(200-160 Ma),and tearing and collapse(150-145 Ma)of the Mongol-Okhotsk oceanic lithosphere.The period of magmatic quiescence from ca.160 to 150 Ma was a response to flat-slab subduction of the Mongol-Okhotsk oceanic lithosphere.Crustal thickening in the NSGXR(145-133 Ma)was due to the collision between the Amuria Block and the Siberian Craton.
基金financially supported by the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB18000000)National Natural Science Foundation of China(41773048)The Western Young Scholars Project(Class A)of Chinese Academy of Sciences。
文摘The Qulong porphyry Cu-Mo deposit,generated in the Miocene post-collisional extension environment of the Gangdese Copper(Molybdenum)Metallogenic Belt,is one of the largest porphyry Cu deposits in China.This study reports the noble gas isotopic compositions of volatiles released from fluid inclusion reserved in pyrite from the Qulong deposit.3He/4 He and 40Ar/36Ar ratios range from 0.54 to 1.015 Ra and 300-359,respectively.Concentrations of 4 He and 40Ar range from 1.77 to 2.62×10^(-8)cm^(3)STP and 1.7-34×10^(-8)cm^(3)STP,respectively.The isotopic composition of noble gases indicates that the ore-forming fluids of the Qulong Cu-Mo deposit were a mixture of fluid containing mantle component,which is exsolved from the porphyry magma,and crustal fluid characterized by atmospheric Ar and crustal radiogenic He.Theδ34S values of pyrite and molybdenite range from-0.52‰to 0.31‰,with an average of-0.12‰,indicating a magmatic origin.More mantle components were involved in the Cu-Mo deposit than in the Mo-Cu deposit in the Qulong-Jiama ore-district.
基金provided by the Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University,China.
文摘The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.
基金supported by the National Natural Science Foundation,40073013
文摘Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.
基金the National Natural Science Foundation of China(No.41272093)National Key R&D Program of China(No.2017YFC0601304)+3 种基金Natural Science Foundation of Jilin Province(No.20180101089JC)Key Projects of Science and Technology Development Plan of Jilin Province(No.20100445)Self-determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources(No.DBY-ZZ-19-04)Heilongjiang Research Project of Land and Resources(No.201605 and 201704)。
文摘The Xiaokele Cu(–Mo)deposit is a recently discovered porphyry deposit in the northern Great Xing’an Range(GXR)of northeast China.The ore bodies in this deposit are mainly hosted within granodiorite porphyry intrusions.Potassic,phyllic,and propylitic alteration zones develop from center to edge.In this paper,we present zircon LA–ICP–MS U–Pb ages,zircon Hf isotopic compositions,and whole-rock geochemistry of the ore-bearing granodiorite porphyries from the Xiaokele Cu(–Mo)deposit.Zircon U–Pb dating suggests that the Xiaokele granodiorite porphyries were emplaced at 148.8±1.1 Ma(weighted-mean age;n=14).The Xiaokele granodiorite porphyries display high SiO2,Al2O3,Sr,and Sr/Y,low K2O/Na2O,MgO,Yb,and Y,belonging to high-SiO2 adakites produced by partial melting of the subducted oceanic slab.Marine sediments were involved in the magma source of the Xiaokele granodiorite porphyries,as indicated by enriched Sr–Nd isotopic compositions(eNd(-t)=-1.17–-0.27),low positive zircon eHf(t)values(0.4–2.2),and high Th contents(4.06–5.20).The adakitic magma subsequently interacted with the mantle peridotites during ascent through the mantle wedge.The Xiaokele granodiorite porphyries were derived from slab melting during the southward subduction of the Mongol–Okhotsk Ocean.
基金Project(2017M622596)supported by the Postdoctoral Science Foundation of ChinaProject(2015CX008)supported by the Innovation Driven Project of Central South University,ChinaProject(12120114052201)supported by the Geological Scientific Research Project of Land and Resources of Hunan Province,China
文摘The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution because of their close association with porphyry Mo mineralization. Here, we present a study using petrogeochemistry data to constrain the petrogenesis of the Xiaofan granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations show that the Xiaofan pluton mainly consists of porphyritic granite. The Xiaofan granites have high SiO2 contents of 74.29 wt%-76.07 wt% (average: 75.18 wt%), A1203 contents of 11.66 wt%-12.83 wt% (average: 12.13 wt%), and K20 contents of 5.37 wt%-7.90 wt% (average: 6.86 wt%) and low MgO (0.06 wt%-0.16 wt%), TiO2 (0.09 wt%-0.10 wt%), and P205 (0.047 wt%-0.103 wt%) contents. They are enriched in Rb, U, K and Hf but depleted in Ba, Nb, Ta, Sr and Ti. By geochemical and mineralogical features, we propose that the Xiaofan granites belong to A-type type granite and dominantly sourced from the crust. The granites from the Xiaofan Mo deposit may have formed in a post-collision extensional setting.
文摘We studied the fluid inclusions of the Jiguanshan Mo deposit in China,which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt.The irregular Mo ore body with various types of hydrothermal veinlets is hosted by Late Jurassic granite porphyry.Intense hydrothermal alterations in the deposit from the core to margin are silicification-potassium feldspar alteration,pyrite-quartz-sericite-fluorite alteration,and propylitic alteration.Based on the mineral assemblages and crosscutting relationships of ore veins,the ore-forming process were divided into three stages and two substages:quartz-pyrite veins(stage I)associated with potassic alteration;quartz-molybdenite-chalcopyrite-pyrite veins(substage Ⅱ-1)and quartz-molybdenite-fluorite veins(substage Ⅱ-2)associated with phyllic alteration;and fluorite-quartz-carbonate veins(stage Ⅲ)with carbonation.Five majorfluid inclusions(FIs)types were distinguished in the quartz associated with oxide and sulfide minerals,i.e.polyphase brine(Pb-type),opaque-bearing brine(Ob-type),solid halite(S-type),two-phase aqueous(A-type),and vapor(Vtype)inclusions.The FIs of stage I were composed of liquid-rich S-,A-,and V-type FIs with homogenization temperatures and salinities of 490 to 511℃ and 8.9 to 56.0 wt%NaCl equiv.,respectively.The FIs of substage Ⅱ-1 are composed of Pb-,Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 352 to 460℃ and 3.7 to 46.1 wt%NaCl equiv,respectively.The FIs of substage Ⅱ-2 are Ob-,S-,A-,and V-type FIs with homogenization temperatures and salinities of 234 to309°C and 3.7 to 39.2 wt%NaCl equiv,respectively.The FIs of stage Ⅲ are A-type FIs with homogenization temperatures and salinities of 136 to 172℃ and 1.1 to 8.9 wt%NaCl equiv,respectively.Fluid boiling,which resulted in the precipitation of sulfides,occurred in stages I andⅡ.The initial ore-forming fluids of the Jiguanshan deposit had high temperature,high salinity,and belonged to an F-rich NaCl±KCl-H2O system.The fluids gradually evolved to low temperature,low salinity,and belonged to a NaCl-H2O system.Studies of the hydrogen and oxygen isotope compositions of quartz(δ^18OH2O=-7.3 to 6.3%,δDH2O=-104.3 to-83.3%)show that the ore-formingfluids gradually evolved from magmatic water to meteoric water.
基金financially supported by the State Key Fundamental Research Project of China(2012CB476505)the 12th Five-Year Plan project of the National Science & Technology Pillar Program(2011BAB04B02)+1 种基金the Frontier Program(Y3CJ001000)from the Institute of Geochemistry,Chinese Academy of Sciencesthe Frontier Program(Y3KJA20001)from the State Key Laboratory of Ore Deposit Geochemistry
文摘The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO2-CH4 single phase FIs,2) CO2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO2- and CH4-rich FIs of the CO2-CH4-H2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO2-rich FIs of the CO2-H2O-NaCl system and liquid-rich FIs of the H2O-NaCl system.For the CO2-CH4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm^3 to 0.8 g/cm^3;for two- or three-phase FIs of the CO2-CH4-H2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm^3 to 1.0 g/cm^3,respectively.For CO2-H2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm^3 to 1.0 g/cm^3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO2 and CH4 contents and reducibility(indicated by the presence of CH4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The 〈S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the 〈JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.〈534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.
基金supported by the National Natural Science Foundation of China (Nos. 41273019,40972053)the Chinese State 973 Program (No. 2007CB411302)the Fund of Chinese Academy of Sciences (No. KZCX2-YW-JS109)
文摘The Suoerkuduke Cu (Mo) deposit, in the same metallogenic belt with Xilekuduke Cu-Mo deposit, is located in the Armantai island arc belt on the northern margin of East Junggar, Northwest China. Rhenium and osmium isotopic analysis of seven molybdenite samples from the deposit was used to determine the age of mineralization. A seven-point isochron age of 317.7±7.6 Ma, which is consistent, within analytical error, with the average model age of 323.3±1.9 Ma indicates that this deposit was formed at transitional period between the Early and Late Carboniferous. This age is obviously later than that of the Lower Devonian Tuoranggekuduke Formation acting as the wall rock but contemporaneous with the early stage of plutonism (330-268 Ma) in East Junggar. Based on the characteristics of mineralization age and tectonic setting of many typical deposits on the northern margin of East Junggar, we proposed that the mineralization age of Suoerkuduke deposit is a key period of East Junggar for the tectonic regime transforming from compression to extension and also the time when granitoids and deposits widely spread in this area. Mineralization and formation of skarn in this deposit are closely related to felsic-intermediate magmatism. The distinct characteristic from typical skarn-type deposits is that the metallogenic parent intrusion is a huge batholith in the depth. The Cu (Mo) mineralization, moyitc, and granite porphyry are all derived products of the batholith.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41172085 & 41472066)the Scientific Project of China Geological Survey (Grant No. 12120114028401)
文摘The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.