The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no ...The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.展开更多
A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ...A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.展开更多
The promotion effect of CO in methane dehydroaromatization was investigated using ^13CO probe molecules. By alternative injection of ^13CO to the methane feed, the distribution of ^13CxC6-xH6(x= 0-3) products change...The promotion effect of CO in methane dehydroaromatization was investigated using ^13CO probe molecules. By alternative injection of ^13CO to the methane feed, the distribution of ^13CxC6-xH6(x= 0-3) products changed significantly, confirming the participation of ^13CO in the reaction network. The addition of ^13CO did not change the conversion of CH4 but improved slightly the durability of the methane dehydroaromatization (MDA) reaction, which might be caused by the interaction of the dissociated oxygen species and the deposited carbon species. The ratio of ^13CxC6-xH6 (x = 0-3) varied with the time on stream, which was determined by the competitive reactions of methane decomposition and ^13CO dissociation.展开更多
As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapi...As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapid movement and chemical reaction.Existing evaluation methods for attrition resistance,such as ASTM D5757 and Jet Cup test,are targeted for fresh catalysts at ambient temperature,which cannot well reflect the real process.In this study,spherical-shaped Mo/HZSM-5 catalyst prepared by dipping and spray drying was placed in a self-made apparatus for attrition testing,in which the catalyst attrition under different system temperatures,running time and process factors was investigated with percent mass loss(PML),particle size-mass distribution(PSMD)and scanning electron microscope(SEM).Carbon deposition on the catalyst before and after activation,aromatization and regeneration was analyzed by thermogravimetry(TG),and the attrited catalysts were evaluated for methane dehydro-aromatization(MDA).The results show that the surface abrasion and body breakage of catalyst particles occur continuously,with the increase of system temperature and running time,and make the PML rise gradually.The process factors of activation,aromatization and regeneration can cause the catalyst attrition and carbon deposits,which broaden the PSMD in varying degrees,and the carbon-substances on catalysts greatly improve their attrition resistance at high temperature.Catalyst attrition has a certain influence on its catalytic performance,and the main reasons point to particle breakage and fine powder escape.展开更多
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsor...SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.展开更多
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main act...Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K.展开更多
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe...Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.展开更多
The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecul...The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals.展开更多
A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were stu...A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were studied by TEM, XPS and chemisorption of CO. The experimental results show that the addition of La2O3 increases the activities for the methanation of CO and CO2, the dispersity of nickel on catalysts, the active nickel surface area and the concentration of nickel atoms on the surface of Ni-Mo/-Al2O3 catalysts. At the same time, it also decreases the binding energy of Ni2p,. in catalysts.展开更多
Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalys...Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalyst exhibits an excellent catalytic activity and stability. XRD and EPR characterization results show that the O-S exchange might occur during the impregnation, leading to the formation of (NH4)2MoS4 (or (NH4)zMoxSy) precursor, which was then thermally decomposed and reduced to MoS2. The higher catalytic performance is attributed to an optimization formation of active Co-Mo sulfides, consisting of well dispersed MoS2 and Co-Mo-S phase due to the redispersion of Co sulfide particles over the edges of newly formed MoS2 crystallites.展开更多
With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic perfor...With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system sup- ported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlswP/(g-cat.h), the specific HDS activity of thiophene reached 3.29 mmolc4H4S/(s.molMo), which was 1.32 times as high as that (2.49 mmolc4H4S/(s.molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolc4H4S/(s-molMo)) of the catalysts supported by AC with the respective optimal MoaCol-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent activation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo^4+) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationarystate concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions.展开更多
Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.T...Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane.展开更多
Superfine Mo/ZrO_2 catalysts were prepared for partial oxidation of methane to HCHO and characterized by BET, XRD, LRS, H2-TPR and XPS. Mo existed mainly in the form of Zr(MoO4)2, and the catalytic performance and phy...Superfine Mo/ZrO_2 catalysts were prepared for partial oxidation of methane to HCHO and characterized by BET, XRD, LRS, H2-TPR and XPS. Mo existed mainly in the form of Zr(MoO4)2, and the catalytic performance and physicochemical properties of the Mo/ZrO2 catalysts were closely related to this species.展开更多
In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional st...In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional structure is obtained following the reduction of MoO3 to MoO2. The metallic properties of MoO2 are attributed to the delocalized p electrons above the Mo atoms place along the C-axis of the deformed rutile structure of this phase and observed as a density of states at the Fermi level. Hydrogen dissociation by this metallic function and bonding of the produced H atoms to surface oxygen atoms results in the formation of Bronsted acid Mo-OH function(s). Accordingly, a bifunctional (metal-acid) MoO2-x(OH)y structure is formed on the TiO2 support. The bifunctional properties enabled to perform isomerization reactions of light naphtha hydrocarbons into branched species of higher octane number. This catalyst is proposed as a possible replacement of the commercially used Pt deposited on chlorinated alumina catalysts in which toxic chlorine is employed and benzene is produced as a byproduct of n-hexane isomerization. The acid function in this bifunctional Mo system is quenched following the addition of controlled amount of sodium. The presence of only the metallic function in this modified NaMoTi system is monitored via the hydrogenation of olefins and enabled to define the bifunctional mechanism of the hydrocarbon isomerization process performed by MoO2-x(OH)y structure.展开更多
The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is s...The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is shown that molybdenum nitrid(Mo2N) was formed above 923K and its intermediate MoO2 formed at about 573~623K under the rapid (5K/min.) TPR conditions.Mo2N is the most active species for pyridine HDN among MoO3,MoO2,MoS2,and Mo2N. Moreover,it can be promoted by adding Ni component.It is shown that the Ni/Mo2N catalyst prepared by adding some NiO into the precursor MoO3 has a steady HDN activity Which is far higher than that of the commercial sulfided NiMo/Al2O3(HR346) catalyst.展开更多
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption o...The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.展开更多
The two Co sites are well characterized in reduced Co-Mo/Al_2O_3 and Ru-Co- Mo/Al_2O_3 by new bands at 1895 and 1880 cm^(-1)in the IR spectra due to NO adsorption.
基金supported by the National Natural Science Foundation of China(21673214,U1732272)
文摘The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.
基金the National Natural Science Foundation of China (Grant Nos. 21273058, 21673064, 51802059 and 21503059)China Postdoctoral Science Foundation (Grant Nos. 2018M631938, 2018T110307 and 2017M621284)+1 种基金Heilongjiang Postdoctoral Fund (LBH-Z17074)Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2019040 and 2019041)
文摘A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution.
基金supported by the National Basic Research Program of China (2005CB221400)x
文摘The promotion effect of CO in methane dehydroaromatization was investigated using ^13CO probe molecules. By alternative injection of ^13CO to the methane feed, the distribution of ^13CxC6-xH6(x= 0-3) products changed significantly, confirming the participation of ^13CO in the reaction network. The addition of ^13CO did not change the conversion of CH4 but improved slightly the durability of the methane dehydroaromatization (MDA) reaction, which might be caused by the interaction of the dissociated oxygen species and the deposited carbon species. The ratio of ^13CxC6-xH6 (x = 0-3) varied with the time on stream, which was determined by the competitive reactions of methane decomposition and ^13CO dissociation.
基金supported by Hydrocarbon High-efficiency Utilization Technology Research Center of Shaanxi Yanchang Petroleum(Group)Co.,Ltd.,China(Contract No.HCRC-C13-010)the National Natural Science Foundation of China(No.21536009)。
文摘As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapid movement and chemical reaction.Existing evaluation methods for attrition resistance,such as ASTM D5757 and Jet Cup test,are targeted for fresh catalysts at ambient temperature,which cannot well reflect the real process.In this study,spherical-shaped Mo/HZSM-5 catalyst prepared by dipping and spray drying was placed in a self-made apparatus for attrition testing,in which the catalyst attrition under different system temperatures,running time and process factors was investigated with percent mass loss(PML),particle size-mass distribution(PSMD)and scanning electron microscope(SEM).Carbon deposition on the catalyst before and after activation,aromatization and regeneration was analyzed by thermogravimetry(TG),and the attrited catalysts were evaluated for methane dehydro-aromatization(MDA).The results show that the surface abrasion and body breakage of catalyst particles occur continuously,with the increase of system temperature and running time,and make the PML rise gradually.The process factors of activation,aromatization and regeneration can cause the catalyst attrition and carbon deposits,which broaden the PSMD in varying degrees,and the carbon-substances on catalysts greatly improve their attrition resistance at high temperature.Catalyst attrition has a certain influence on its catalytic performance,and the main reasons point to particle breakage and fine powder escape.
基金supported by NSFC(21376261,21173270,21177160)Beijing Natural Science Foundation(2142027)+1 种基金863 Program of China(2013AA065302)the Doctor Select Foundation(20130007110007)
文摘SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.
文摘Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K.
文摘Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.
基金supported by the National Nature Science Foundation of China(No.20903054).
文摘The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals.
文摘A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were studied by TEM, XPS and chemisorption of CO. The experimental results show that the addition of La2O3 increases the activities for the methanation of CO and CO2, the dispersity of nickel on catalysts, the active nickel surface area and the concentration of nickel atoms on the surface of Ni-Mo/-Al2O3 catalysts. At the same time, it also decreases the binding energy of Ni2p,. in catalysts.
文摘Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalyst exhibits an excellent catalytic activity and stability. XRD and EPR characterization results show that the O-S exchange might occur during the impregnation, leading to the formation of (NH4)2MoS4 (or (NH4)zMoxSy) precursor, which was then thermally decomposed and reduced to MoS2. The higher catalytic performance is attributed to an optimization formation of active Co-Mo sulfides, consisting of well dispersed MoS2 and Co-Mo-S phase due to the redispersion of Co sulfide particles over the edges of newly formed MoS2 crystallites.
基金Supported by National Natural Science Foundation of China (No. 20473063 and No. 20590364).
文摘With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system sup- ported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlswP/(g-cat.h), the specific HDS activity of thiophene reached 3.29 mmolc4H4S/(s.molMo), which was 1.32 times as high as that (2.49 mmolc4H4S/(s.molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolc4H4S/(s-molMo)) of the catalysts supported by AC with the respective optimal MoaCol-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent activation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo^4+) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationarystate concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions.
文摘Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane.
基金This work is supported by the Ministry of Science and Technology(G199902240-06)
文摘Superfine Mo/ZrO_2 catalysts were prepared for partial oxidation of methane to HCHO and characterized by BET, XRD, LRS, H2-TPR and XPS. Mo existed mainly in the form of Zr(MoO4)2, and the catalytic performance and physicochemical properties of the Mo/ZrO2 catalysts were closely related to this species.
文摘In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional structure is obtained following the reduction of MoO3 to MoO2. The metallic properties of MoO2 are attributed to the delocalized p electrons above the Mo atoms place along the C-axis of the deformed rutile structure of this phase and observed as a density of states at the Fermi level. Hydrogen dissociation by this metallic function and bonding of the produced H atoms to surface oxygen atoms results in the formation of Bronsted acid Mo-OH function(s). Accordingly, a bifunctional (metal-acid) MoO2-x(OH)y structure is formed on the TiO2 support. The bifunctional properties enabled to perform isomerization reactions of light naphtha hydrocarbons into branched species of higher octane number. This catalyst is proposed as a possible replacement of the commercially used Pt deposited on chlorinated alumina catalysts in which toxic chlorine is employed and benzene is produced as a byproduct of n-hexane isomerization. The acid function in this bifunctional Mo system is quenched following the addition of controlled amount of sodium. The presence of only the metallic function in this modified NaMoTi system is monitored via the hydrogenation of olefins and enabled to define the bifunctional mechanism of the hydrocarbon isomerization process performed by MoO2-x(OH)y structure.
文摘The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is shown that molybdenum nitrid(Mo2N) was formed above 923K and its intermediate MoO2 formed at about 573~623K under the rapid (5K/min.) TPR conditions.Mo2N is the most active species for pyridine HDN among MoO3,MoO2,MoS2,and Mo2N. Moreover,it can be promoted by adding Ni component.It is shown that the Ni/Mo2N catalyst prepared by adding some NiO into the precursor MoO3 has a steady HDN activity Which is far higher than that of the commercial sulfided NiMo/Al2O3(HR346) catalyst.
基金financially supported by the National Natural Science Foundation of China(No.20903054)Liaoning Provincial Natural Science Foundation(No.2014020107)+1 种基金Program for Liaoning excellent talents in university(No.LJQ2014041)sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(SRF for ROCS,SEM)
文摘The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.
文摘The two Co sites are well characterized in reduced Co-Mo/Al_2O_3 and Ru-Co- Mo/Al_2O_3 by new bands at 1895 and 1880 cm^(-1)in the IR spectra due to NO adsorption.