期刊文献+
共找到564篇文章
< 1 2 29 >
每页显示 20 50 100
Mo/REHY催化剂的加氢脱氮性能研究 被引量:1
1
作者 曾敏 靳广洲 贾春旭 《石油化工》 CAS CSCD 北大核心 2012年第8期890-893,共4页
采用钼酸铵溶液与REHY分子筛通过等体积浸渍法制备了Mo/REHY催化剂。利用XRD,NH3-TPD,BET等方法表征了Mo/REHY催化剂的结构。表征结果显示,催化剂中归属于REHY分子筛的晶相峰保持完好,活性组分Mo高度分散在REHY分子筛的表面,使Mo/REHY... 采用钼酸铵溶液与REHY分子筛通过等体积浸渍法制备了Mo/REHY催化剂。利用XRD,NH3-TPD,BET等方法表征了Mo/REHY催化剂的结构。表征结果显示,催化剂中归属于REHY分子筛的晶相峰保持完好,活性组分Mo高度分散在REHY分子筛的表面,使Mo/REHY催化剂的酸量减少,比表面积下降。考察了不同Mo负载量的Mo/REHY催化剂的喹啉加氢脱氮性能。实验结果表明,在反应压力6.0 MPa、反应温度360℃、液态空速4.0 h-1和V(H2):V(反应液)=500:1的适宜条件下,Mo负载量为10%(w)的Mo/REHY催化剂的喹啉加氢脱氮转化率可达81.14%。 展开更多
关键词 钼基催化剂 rehy分子筛 喹啉 加氢脱氮
下载PDF
Nanosheet-structured K–Co–MoS_2 catalyst for the higher alcohol synthesis from syngas: Synthesis and activation 被引量:5
2
作者 Huan Li Wei Zhang +4 位作者 Yinyin Wang Meiling Shui Song Sun Jun Bao Chen Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期57-62,共6页
The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no ... The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species. 展开更多
关键词 SYNGAS Higher alcohol SYNTHESIS mo-based catalyst Co–mo–S phase
下载PDF
Mo/REHY催化剂的加氢脱硫性能
3
作者 刘亚琼 靳广洲 曾敏 《工业催化》 CAS 2011年第7期28-32,共5页
将钼酸铵溶液与REHY等体积浸渍和焙烧,制备了Mo/REHY催化剂,采用XRD和NH_3-TPD对其进行表征。以质量分数0.6%的二苯并噻吩/正癸烷溶液为模型反应物评价其加氢脱硫性能。结果表明,不同焙烧温度制备的Mo/REHY催化剂,归属于REHY的晶相峰保... 将钼酸铵溶液与REHY等体积浸渍和焙烧,制备了Mo/REHY催化剂,采用XRD和NH_3-TPD对其进行表征。以质量分数0.6%的二苯并噻吩/正癸烷溶液为模型反应物评价其加氢脱硫性能。结果表明,不同焙烧温度制备的Mo/REHY催化剂,归属于REHY的晶相峰保持完好,金属活性组分Mo进入REHY体相超笼,引起REHY分子筛的弱酸和中强酸减少,强酸增加。焙烧温度520℃制备的Mo/REHY催化剂经过原位预硫化处理后,在反应压力4.0 MPa、空速40 h^(-1)、反应温度270℃、290℃和310℃时的二苯并噻吩加氢脱硫转化率分别达16.46%、43.21%和70.43%,较焙烧温度500℃制备的Mo/REHY催化剂,分别提高了1.56、6.47和2.83个百分点;继续升高焙烧温度,Mo/REHY催化剂二苯并噻吩加氢脱硫转化率基本相当。实验选择制备Mo/REHY催化剂的焙烧温度以520℃较为适宜。Mo/REHY催化剂二苯并噻吩加氢脱硫生成联苯的选择性约为2.7%,表明二苯并噻吩加氢脱硫的反应途径是以先加氢后脱硫的方式为主。 展开更多
关键词 催化化学 mo/rehy催化剂 加氢脱硫 二苯并噻吩
下载PDF
Fabrication of C@MoxTi1-xO2-δ nanocrystalline with functionalized interface as efficient and robust PtRu catalyst support for methanol electrooxidation 被引量:2
4
作者 Jialong Li Lei Zhao +2 位作者 Xifei Li Sue Hao Zhenbo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期7-14,I0001,共9页
A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of ... A core shell structured C@MoxTi1-xO2-δnanocrystal with a functionalized interface(C@MTNC-FI)was fabricated via the hydrothermal method with subsequent annealing derived from tetrabutyl orthotitanate.The formation of anatase TiO2 was inhibited by the simultaneous presence of the hydrothermal etching/regrowth process,infiltration of Mo dopants and carbon coating,which endows the C@MTNC-FI with an ultrafine crystalline architecture that has a Mo-functionalized interface and carbon-coated shell.Pt Ru nanoparticles(NPs)were supported on C@MTNC-FI by employing a microwave-assisted polyol process(MAPP).The obtained Pt Ru/C@MTNC-FI catalyst has 2.68 times higher mass activity towards methanol electrooxidation than that of the un-functionalized catalyst(Pt Ru/C@TNC)and 1.65 times higher mass activity than that of Pt Ru/C catalyst with over 25%increase in durability.The improved catalytic performance is due to several aspects including ultrafine crystals of TiO2 with abundant grain boundaries,Mofunctionalized interface with enhanced electron interactions,and core shell architecture with excellent electrical transport properties.This work suggests the potential application of an interface-functionalized crystalline material as a sustainable and clean energy solution. 展开更多
关键词 Interface functionalization TiO2 NANOCRYSTALLINE mo doping Core–shell PtRu catalyst Methanol electrooxidation
下载PDF
A ^(13)CO isotopic study on the CO promotion effect in methane dehydroaromatization reaction over a Mo/HMCM-49 catalyst 被引量:2
5
作者 Songdong Yao, Changyong Sun, Juan Li, Xiumin Huang, Wenjie Shen State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China 《Journal of Natural Gas Chemistry》 CSCD 2010年第1期1-5,共5页
The promotion effect of CO in methane dehydroaromatization was investigated using ^13CO probe molecules. By alternative injection of ^13CO to the methane feed, the distribution of ^13CxC6-xH6(x= 0-3) products change... The promotion effect of CO in methane dehydroaromatization was investigated using ^13CO probe molecules. By alternative injection of ^13CO to the methane feed, the distribution of ^13CxC6-xH6(x= 0-3) products changed significantly, confirming the participation of ^13CO in the reaction network. The addition of ^13CO did not change the conversion of CH4 but improved slightly the durability of the methane dehydroaromatization (MDA) reaction, which might be caused by the interaction of the dissociated oxygen species and the deposited carbon species. The ratio of ^13CxC6-xH6 (x = 0-3) varied with the time on stream, which was determined by the competitive reactions of methane decomposition and ^13CO dissociation. 展开更多
关键词 ^13CO labeling methane dehydroaromatization mo/HMCM-49 catalyst deactivation
下载PDF
Study on attrition of spherical-shaped Mo/HZSM-5 catalyst for methane dehydro-aromatization in a gas–solid fluidized bed 被引量:3
6
作者 Xinzhuang Zhang Yunda Han +2 位作者 Dapeng Li Zhanguo Zhang Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期172-183,共12页
As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapi... As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapid movement and chemical reaction.Existing evaluation methods for attrition resistance,such as ASTM D5757 and Jet Cup test,are targeted for fresh catalysts at ambient temperature,which cannot well reflect the real process.In this study,spherical-shaped Mo/HZSM-5 catalyst prepared by dipping and spray drying was placed in a self-made apparatus for attrition testing,in which the catalyst attrition under different system temperatures,running time and process factors was investigated with percent mass loss(PML),particle size-mass distribution(PSMD)and scanning electron microscope(SEM).Carbon deposition on the catalyst before and after activation,aromatization and regeneration was analyzed by thermogravimetry(TG),and the attrited catalysts were evaluated for methane dehydro-aromatization(MDA).The results show that the surface abrasion and body breakage of catalyst particles occur continuously,with the increase of system temperature and running time,and make the PML rise gradually.The process factors of activation,aromatization and regeneration can cause the catalyst attrition and carbon deposits,which broaden the PSMD in varying degrees,and the carbon-substances on catalysts greatly improve their attrition resistance at high temperature.Catalyst attrition has a certain influence on its catalytic performance,and the main reasons point to particle breakage and fine powder escape. 展开更多
关键词 Attrition mo/HZSM-5 FLUIDIZED-BED catalyst activation Methane dehydro-aromatization
下载PDF
Selective oxidation of ethane to aldehydes over SBA-15 supported molybdenum catalyst 被引量:1
7
作者 Jianmei Li Jian Liu +7 位作者 Liwei Ren Qinglong Liu Zhen Zhao Yongsheng Chen Pengyu Zhu Yuechang Wei Aijun Duan Guiyuan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期609-616,共8页
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsor... SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species. 展开更多
关键词 selective oxidation of ethane supported oxides catalysts mo ALDEHYDES SBA-15
下载PDF
Support effects on the chemical property and catalytic activity of Co-Mo HDS catalyst in sulfur recovery 被引量:7
8
作者 Ali Nakhaei Pour Ali Morad Rashidi +2 位作者 Kherolah Jafari Jozani Ali Mohajeri Payman Khorami 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第1期91-95,共5页
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main act... Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K. 展开更多
关键词 sulfur recovery Co-mo catalyst carbon nanotubes HDS process
下载PDF
Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al_2O_3 catalyst for water gas shift reaction 被引量:6
9
作者 Yixin Lian Huifang Wang Quanxing Zheng Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期161-166,共6页
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe... Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction. 展开更多
关键词 Co-mo catalyst reduction SULFIDATION mixed support water gas shift
下载PDF
Probing into Surface Sites of Fresh Mo_2N/Al_2O_3,Mo_2C/Al_2O_3 and MoP/Al_2O_3 Catalysts by CO Adsorption and In Situ FT-IR Spectroscopy 被引量:1
10
作者 Zhang Jing Wu Weicheng +1 位作者 Yan Song Zhang Dan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第4期43-45,共3页
The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecul... The surface nature of fresh Mo2N/Al2O3, Mo2C/Al2O3 and/MoP/Al2O3 catalysts, which were synthesized directly in the IR cell to avoid passivation, were characterized by in situ IR spectroscopy with CO as a probe molecule. CO adsorbed on fresh catalysts showed characteristic IR bands at 2045 cm-1 for Mo2N/Al2O3 catalyst, 2054 cm-1 for MozC/Al2O3 catalyst and 2037 cm-1 for MoP/Al2O3 catalyst, respectively. A strong band at 2200 cm-1 for Mo2N/Al2O3 catalyst, which could be ascribed to NCO species formed when CO reacted upon surface active nitrogen atoms, and a weak band at 2196 cm-1 for Mo2C/Al2O3 catalyst, which could be attributed to CCO species, were also detected. CO adsorbed on fresh Mo2N/Al2O3 catalyst, Mo2C/Al2O3 catalyst and MoP/Al2O3 catalyst, showed strong molecular adsorption, just like noble metals. Our experimental results are bolstered by direct IR evidence demonstrating the similarity in surface electronic property between the fresh Mo2N/Al2O3, Mo2C/Al2O3 and MoP/Al2O3 catalysts and noble metals. 展开更多
关键词 mo2C/Al2O3 catalyst mo2N/Al2O3 catalyst mo2P/Al2O3 catalyst FT-IR CO
下载PDF
Effect of La_2O_3on Methanation of CO and CO_2over Ni-Mo/γ-Al_2O_3Catalyst 被引量:5
11
作者 王敏炜 罗来涛 +1 位作者 李凤仪 王继军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期22-26,共5页
A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were stu... A series of Ni-Mo/-A12O3 methanation catalysts containing La2O3 were prepared by impregnation. The activities of catalysts for CO and CO2 methanation were investigated. The surface properties of the catalysts were studied by TEM, XPS and chemisorption of CO. The experimental results show that the addition of La2O3 increases the activities for the methanation of CO and CO2, the dispersity of nickel on catalysts, the active nickel surface area and the concentration of nickel atoms on the surface of Ni-Mo/-Al2O3 catalysts. At the same time, it also decreases the binding energy of Ni2p,. in catalysts. 展开更多
关键词 rare earths Ni-mo-La catalyst carbon monoxide carbon dioxide METHANATION
下载PDF
Water gas shift activity of Co-Mo/MgO-Al_2O_3 catalysts presulfided with ammonium sulfide 被引量:4
12
作者 Yixin Lian, Huifang Wang, Weiping Fang, Yiquan Yang Department of Chemistry, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, Fujian, China 《Journal of Natural Gas Chemistry》 CSCD 2010年第1期61-66,共6页
Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalys... Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalyst exhibits an excellent catalytic activity and stability. XRD and EPR characterization results show that the O-S exchange might occur during the impregnation, leading to the formation of (NH4)2MoS4 (or (NH4)zMoxSy) precursor, which was then thermally decomposed and reduced to MoS2. The higher catalytic performance is attributed to an optimization formation of active Co-Mo sulfides, consisting of well dispersed MoS2 and Co-Mo-S phase due to the redispersion of Co sulfide particles over the edges of newly formed MoS2 crystallites. 展开更多
关键词 Co-mo-based catalyst ammonium sulfide presulfidation water-gas shift
下载PDF
Novel MWCNT-Support for Co-Mo Sulfide Catalyst in HDS of Thiophene and HDN of Pyrrole 被引量:6
13
作者 Kunming Dong Xiaoming Ma Hongbin Zhang Guodong Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期28-37,共10页
With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic perfor... With home-made multi-walled carbon nanotubes (MWCNTs, simplified as CNTs in later text) as support, CNT-supported Co-Mo-S catalysts, denoted as x%(mass percentage)MoiCoj/CNTs, were prepared. Their catalytic performance for thiophene hydrodesulfurization (HDS) and pyrrole hydrodenitrification (HDN) reactions was studied, and compared with the reference system sup- ported by AC. Over the 7.24%Mo3Co1/CNTs catalyst at reaction condition of 1.5 MPa, 613 K, C4H4S/H2=3.7/96.3(molar ratio) and GHSV≈8000 mlswP/(g-cat.h), the specific HDS activity of thiophene reached 3.29 mmolc4H4S/(s.molMo), which was 1.32 times as high as that (2.49 mmolc4H4S/(s.molMo)) of the AC-based counterpart, and was 2.47 times as high as that (1.33 mmolc4H4S/(s-molMo)) of the catalysts supported by AC with the respective optimal MoaCol-loading amount, 16.90%Mo3Co1/AC. Analogous reaction-chemical behaviours were also observed in the case of pyrrole HDN. It was experimentally found that using the CNTs in place of AC as support of the catalyst caused little change in the apparent activation energy for the thiophene HDS or pyrrole HDN reaction, but led to a significant increase in the concentration of catalytically active Mo-species (Mo^4+) at the surface of the functioning catalyst. On the other hand, H2-TPD measurements revealed that the CNT-supported catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures ranging from room temperature to about 673 K. This unique feature would help to generate microenvironments with higher stationarystate concentration of active hydrogen-adspecies at the surface of the functioning catalyst. Both factors mentioned above were favorable to increasing the rate of thiophene HDS and pyrrole HDN reactions. 展开更多
关键词 multi-walled carbon nanotube mo-Co-S/CNTs catalyst thiophene hydrodesulphurization pyrrole hydrodenitrification
下载PDF
Oxidation of propane to acrylic acid and acetic acid over alkaline earth-doped Mo-V-Sb-O_x catalysts 被引量:2
14
作者 Chandan S.Chaudhari Shailesh S.Sable +2 位作者 Hanumant Gurav Ashutosh A.Kelkar Vilas H.Rane 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期593-599,共7页
Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.T... Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane. 展开更多
关键词 oxidation of propane surface acidity alkaline earth doped mo-V-Sb-Ox catalysts acrylic acid acetic acid
下载PDF
Partial Oxidation of Methane to Formaldehyde over Superfine Mo/ZrO_2 Catalysts
15
作者 XinZhang DehuaHe 《Journal of Natural Gas Chemistry》 CAS CSCD 2002年第1期16-17,共2页
Superfine Mo/ZrO_2 catalysts were prepared for partial oxidation of methane to HCHO and characterized by BET, XRD, LRS, H2-TPR and XPS. Mo existed mainly in the form of Zr(MoO4)2, and the catalytic performance and phy... Superfine Mo/ZrO_2 catalysts were prepared for partial oxidation of methane to HCHO and characterized by BET, XRD, LRS, H2-TPR and XPS. Mo existed mainly in the form of Zr(MoO4)2, and the catalytic performance and physicochemical properties of the Mo/ZrO2 catalysts were closely related to this species. 展开更多
关键词 methane partial oxidation FORMALDEHYDE mo/ZrO_2 catalysts Zr(moO_4)_2
下载PDF
Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能
16
作者 桂鑫 陈汇勇 +2 位作者 白柏杨 贾永梁 马晓迅 《化工进展》 EI CAS CSCD 北大核心 2024年第5期2386-2395,共10页
通过水热合成法分别制备了负载型NiC/Al-MCM-41和NiMoC/Al-MCM-41催化剂,并将其应用于芘加氢反应。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2物理吸附、NH3... 通过水热合成法分别制备了负载型NiC/Al-MCM-41和NiMoC/Al-MCM-41催化剂,并将其应用于芘加氢反应。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2物理吸附、NH3程序升温脱附(NH3-TPD)和热重(TG)对催化剂进行表征,并通过间歇高压反应釜对催化剂的芘加氢活性进行评价。探究Mo掺杂改性对NiC/Al-MCM-41催化剂物理-化学结构及加氢反应活性的影响,揭示催化剂物理和化学性质与加氢活性之间的构效关系。结果表明,在反应温度为340℃、H_(2)压力为6MPa、连续反应2h时,NiMoC/Al-MCM-41催化剂表现出最佳的加氢活性,且具有一定的再生性能。相较于NiC/Al-MCM-41催化剂,Mo掺杂改性使得芘加氢转化率和深度加氢选择性分别从65.2%和58.9%提升至90.8%和76.2%,有效地提高了催化剂的加氢反应性能。但由于积炭堵塞催化剂孔道,阻碍了芘分子在催化剂孔道内的扩散转递,导致NiMoC/Al-MCM-41催化剂的稳定性较差,后续应进一步提高催化剂的抗积炭性能。 展开更多
关键词 多环芳烃 加氢 催化剂 mo掺杂
下载PDF
Catalytic Active Sites in Molybdenum Based Catalysts
17
作者 S. Al-Kandari H. Al-Kandari +2 位作者 A. M. Mohamed F. Al-Kharafi A. Katrib 《Modern Research in Catalysis》 2013年第2期1-7,共7页
In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional st... In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional structure is obtained following the reduction of MoO3 to MoO2. The metallic properties of MoO2 are attributed to the delocalized p electrons above the Mo atoms place along the C-axis of the deformed rutile structure of this phase and observed as a density of states at the Fermi level. Hydrogen dissociation by this metallic function and bonding of the produced H atoms to surface oxygen atoms results in the formation of Bronsted acid Mo-OH function(s). Accordingly, a bifunctional (metal-acid) MoO2-x(OH)y structure is formed on the TiO2 support. The bifunctional properties enabled to perform isomerization reactions of light naphtha hydrocarbons into branched species of higher octane number. This catalyst is proposed as a possible replacement of the commercially used Pt deposited on chlorinated alumina catalysts in which toxic chlorine is employed and benzene is produced as a byproduct of n-hexane isomerization. The acid function in this bifunctional Mo system is quenched following the addition of controlled amount of sodium. The presence of only the metallic function in this modified NaMoTi system is monitored via the hydrogenation of olefins and enabled to define the bifunctional mechanism of the hydrocarbon isomerization process performed by MoO2-x(OH)y structure. 展开更多
关键词 BIFUNCTIONAL mo catalyst XPS-UPS 2-Propanol N-HEXANE
下载PDF
Ni/Mo_2 N as a Highly Active Hydrodenitrogenation Catalyst
18
作者 Wen Yu ZHANG Xin Ping WANG +1 位作者 Heng Fang JIN Qin XIN (State key Laboratory of Catalysis,Dalian Institute of Chemical Physiscs,Chinese Academy Of Sciences,Dalian 116023)(Inner Mongolia Polytechnic Universal,Huhhot 010062) 《Chinese Chemical Letters》 SCIE CAS CSCD 1996年第9期849-852,共4页
The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is s... The catalysts were prepared by the temperature programmed reaction (TPR) of MoO3 with NH3 at various temperatures in the range of 573K~973K, and their hydrodenitrogenation (HDN) activities were tested in situ.It is shown that molybdenum nitrid(Mo2N) was formed above 923K and its intermediate MoO2 formed at about 573~623K under the rapid (5K/min.) TPR conditions.Mo2N is the most active species for pyridine HDN among MoO3,MoO2,MoS2,and Mo2N. Moreover,it can be promoted by adding Ni component.It is shown that the Ni/Mo2N catalyst prepared by adding some NiO into the precursor MoO3 has a steady HDN activity Which is far higher than that of the commercial sulfided NiMo/Al2O3(HR346) catalyst. 展开更多
关键词 mo Ni/mo2 N as a Highly Active Hydrodenitrogenation catalyst
下载PDF
In Situ IR Spectroscopic Study on the Hydrogenation of 1,3-Butadiene on Fresh Mo_2C/γ-Al_2O_3 Catalyst
19
作者 Zhang Jing Wu Weicheng Liu Shiyang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期32-37,共6页
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption o... The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst. 展开更多
关键词 FRESH mo2C/γ-Al2O3 catalyst HYDROGENATION 1 3-BUTADIENE in SITU IR SPECTROSCOPY
下载PDF
CHARACTERIZATION OF COBALT SITES IN REDUCED Co-Mo/Al_2O_3 AND Ru-Co-Mo/Al_2O_3 CATALYSTS
20
作者 Fend Shou XIAO (Department of Chemistry,Jilin University,Changchun 130023)Qin XIN Xie Xian GUO (National Laboratory for Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023) 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第7期581-582,共2页
The two Co sites are well characterized in reduced Co-Mo/Al_2O_3 and Ru-Co- Mo/Al_2O_3 by new bands at 1895 and 1880 cm^(-1)in the IR spectra due to NO adsorption.
关键词 mo Co CO CHARACTERIZATION OF COBALT SITES IN REDUCED Co-mo/Al2O3 AND Ru-Co-mo/Al2O3 catalystS AL RU
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部