Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using...Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoV>WC coating> Zr/WC composite coating.展开更多
The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heat...The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.展开更多
During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmo...During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmospheric plasma spraying with different cooling processes.The obtained coatings were characterized in terms of microstructure,microhardness and tensile strengths.The relation between the coating microstructure and their fretting fatigue behavior was emphasized.The results show that the sensitivity of Mo coatings to the cooling process is lower than CuNiIn coatings.The resistance to fretting fatigue is determined by the coating microhardness,correlated with the contents of oxides and pores.The fretting wear mechanisms of both the coatings are galling,third body abrasive wear and material transfer.展开更多
HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powder...HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powders.The microstructures of the as-prepared WC-12%Co coatings were then characterized by using XRD analyzer and SEM.The mechanical properties of the two coatings were evaluated by microhardness test,bend test,cup test,tensile test and abrasive wear test.The results showed that the mechanical properties of WC-12%Co coatings sprayed with nanostructured WC-12%Co powder is higher than that of coatings sprayed with microstructured WC-12%Co powders,and the reasons were discussed.展开更多
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c...An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.展开更多
Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the...Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the fine pulverization equipment which is used in the woody biomass production process is required to have wear resistance in the water environment. Thermally sprayed coatings would be a good candidate to improve surface wear resistance under water lubrication. The objective of this study was to evaluate the tribological performance of thermally sprayed coatings under water lubrication. Thermally sprayed coatings which were classified into WC, WB and Ni spraying of three categories were compared with water-lubricated sliding test at a sliding velocity of 0.02 m/s and mean pressure of p0 = 10 MPa with a ring-on-disk apparatus. Thermally sprayed coatings showed comparatively high friction coefficient and well wear resistance under water lubrication. WC contained coatings showed better wear resistance than WB and Ni coatings. Thermally sprayed coatings showed obviously different mechanical properties and tribological behaviors, and the effect of wettability and hardness on tribological characteristics was discussed under water lubrication. Friction coefficient increased as the surface contact angle of thermally sprayed coatings increased. The wear rate decreased as the surface hardness of thermally sprayed coatings increased. Wear resistance of thermally sprayed coatings was excellent under water lubrication. WC contained coatings showed lower wear rate than WB and Ni coatings. WC-14CoCr coating showed the lowest wear rate.展开更多
WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spr...WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spraying technique. Therefore, this study is aimed to evaluate and determine the effect of the deposition parameters on the properties and microstructural characteristics of WC-Co-Cr coatings using a more economical thermal spray technique. In particular, the influence of flame spray parameters on the microstructure, crystal structure, hardness, and sliding wear resistance of WC- Co-Cr coatings was examined. Two parameters were considered: Type of flame (reducing, neutral and oxidizing), and the spray torch nozzle exit area. Results indicated that WC particles undergo considerable degree of decarburization and dissolution during spraying, showing substantial amounts of W2C, W, and Co3W3C, for all the considered conditions. However, the extent of phase transformation depended largely on the flame chemistry. The microstructure of the coatings was mainly affected by the spray nozzle. Regarding the sliding wear behavior, the coatings with uniform distribution of hard particles provided the best wear resistance. The decomposition of WC into W2C phase seems to have meaningless significance in the mass loss, nevertheless, the WC phase transformation to metallic tungsten and η-phase (Co3W3C) produce higher wear rates due to deficiency of carbide particles and embrittlement of the binder phase which induces cracking and delamination of the splats.展开更多
The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating t...The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.展开更多
The Fe40Al-xWC(x=0,10,12,15)coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF)spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide in...The Fe40Al-xWC(x=0,10,12,15)coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF)spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide insight into the oxidation behavior of the as-deposited coatings at 650℃under 0.1 MPa flowing pure O2.The present results show differences in the oxidation behavior of Fe40Al coating and Fe40Al-xWC composite coatings.The irregular Fe2O3 layer is seen on the top surface of the composite coatings.Fe40Al coating and Fe40Al-15WC composite coating both suffer a catastrophic corrosion due to the formation of a porous structure during 24 h of oxidation.However,Fe40Al-10WC and Fe40Al-12WC composite coatings show a good oxidation resistance behavior due to their dense structure.展开更多
MoS coatings were prepared by means of bipolar-pulsed DC magnetron sputtering on different substrate type at various temperature. The structure and fretting behavior of MoS, coatings have been determined respectively ...MoS coatings were prepared by means of bipolar-pulsed DC magnetron sputtering on different substrate type at various temperature. The structure and fretting behavior of MoS, coatings have been determined respectively by XRD and fretting tester in air of 10% to 90% RH and under the load of 1 to 10 N. With increasing substrate temperature, the edge orientation evolves in the MoSx coating, and the relative content of edge-to-basal orientation becomes large. The tribological performance of coatings gets deteriorated. Compared with MoS, coatings on TiN/H13, CrN/H13 and MoS /Ti multilayer, MoS coating on H13 substrate has a lower load bearing capacity, and worn away easily under higher normal load 5N or ION and in air of 90% RH during the fretting process. The friction and wear properties of MoS, coatings on TiN/H13 and CrN/H13 (dual-layer) are slight better than that of MoS, /Ti multilayer under the normal load tested and in air of<10%to90%RH.展开更多
MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings w...MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
基金supported by Key Projects of Strategic International Scientific and Technological Innovation Cooperation(Grant No.2016YFE0201300)
文摘Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoV>WC coating> Zr/WC composite coating.
基金Project(2007T069)supported by Liaoning Education Department Innovation Team,China
文摘The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.
基金the National Natural Science Foundation of China[grant numbers 51875424,51501137 and 51702244]the Fundamental Research Funds for the Central Universities[WUT:2019III033].
文摘During atmospheric plasma spraying,a cooling process usually plays an important role in the coating quality,especially for the oxidation containment of metallic coatings.CuNiIn and Mo coatings were prepared using atmospheric plasma spraying with different cooling processes.The obtained coatings were characterized in terms of microstructure,microhardness and tensile strengths.The relation between the coating microstructure and their fretting fatigue behavior was emphasized.The results show that the sensitivity of Mo coatings to the cooling process is lower than CuNiIn coatings.The resistance to fretting fatigue is determined by the coating microhardness,correlated with the contents of oxides and pores.The fretting wear mechanisms of both the coatings are galling,third body abrasive wear and material transfer.
文摘HVOF thermal spraying tests were carried out for thermal spraying the coatings with two kinds of cermet powders,which are microstructured Sulzer Metco Diamalloy 2004 WC-12%Co powders and nanostructured WC-12%Co powders.The microstructures of the as-prepared WC-12%Co coatings were then characterized by using XRD analyzer and SEM.The mechanical properties of the two coatings were evaluated by microhardness test,bend test,cup test,tensile test and abrasive wear test.The results showed that the mechanical properties of WC-12%Co coatings sprayed with nanostructured WC-12%Co powder is higher than that of coatings sprayed with microstructured WC-12%Co powders,and the reasons were discussed.
文摘An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.
文摘Thermally sprayed coatings have been used in various fields of industry for enhancing surface characteristics of materials and extending their service life. The contact surface of some mechanical equipment such as the fine pulverization equipment which is used in the woody biomass production process is required to have wear resistance in the water environment. Thermally sprayed coatings would be a good candidate to improve surface wear resistance under water lubrication. The objective of this study was to evaluate the tribological performance of thermally sprayed coatings under water lubrication. Thermally sprayed coatings which were classified into WC, WB and Ni spraying of three categories were compared with water-lubricated sliding test at a sliding velocity of 0.02 m/s and mean pressure of p0 = 10 MPa with a ring-on-disk apparatus. Thermally sprayed coatings showed comparatively high friction coefficient and well wear resistance under water lubrication. WC contained coatings showed better wear resistance than WB and Ni coatings. Thermally sprayed coatings showed obviously different mechanical properties and tribological behaviors, and the effect of wettability and hardness on tribological characteristics was discussed under water lubrication. Friction coefficient increased as the surface contact angle of thermally sprayed coatings increased. The wear rate decreased as the surface hardness of thermally sprayed coatings increased. Wear resistance of thermally sprayed coatings was excellent under water lubrication. WC contained coatings showed lower wear rate than WB and Ni coatings. WC-14CoCr coating showed the lowest wear rate.
文摘WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spraying technique. Therefore, this study is aimed to evaluate and determine the effect of the deposition parameters on the properties and microstructural characteristics of WC-Co-Cr coatings using a more economical thermal spray technique. In particular, the influence of flame spray parameters on the microstructure, crystal structure, hardness, and sliding wear resistance of WC- Co-Cr coatings was examined. Two parameters were considered: Type of flame (reducing, neutral and oxidizing), and the spray torch nozzle exit area. Results indicated that WC particles undergo considerable degree of decarburization and dissolution during spraying, showing substantial amounts of W2C, W, and Co3W3C, for all the considered conditions. However, the extent of phase transformation depended largely on the flame chemistry. The microstructure of the coatings was mainly affected by the spray nozzle. Regarding the sliding wear behavior, the coatings with uniform distribution of hard particles provided the best wear resistance. The decomposition of WC into W2C phase seems to have meaningless significance in the mass loss, nevertheless, the WC phase transformation to metallic tungsten and η-phase (Co3W3C) produce higher wear rates due to deficiency of carbide particles and embrittlement of the binder phase which induces cracking and delamination of the splats.
文摘The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gas- phase deposition method. has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.
基金Project(209069)supported by the Key Research Program of Ministry of Education of ChinaProjects(2008GZC00652007GZC0611)supported by the Natural Science Foundation of Jiangxi Province,China
文摘The Fe40Al-xWC(x=0,10,12,15)coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF)spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide insight into the oxidation behavior of the as-deposited coatings at 650℃under 0.1 MPa flowing pure O2.The present results show differences in the oxidation behavior of Fe40Al coating and Fe40Al-xWC composite coatings.The irregular Fe2O3 layer is seen on the top surface of the composite coatings.Fe40Al coating and Fe40Al-15WC composite coating both suffer a catastrophic corrosion due to the formation of a porous structure during 24 h of oxidation.However,Fe40Al-10WC and Fe40Al-12WC composite coatings show a good oxidation resistance behavior due to their dense structure.
文摘MoS coatings were prepared by means of bipolar-pulsed DC magnetron sputtering on different substrate type at various temperature. The structure and fretting behavior of MoS, coatings have been determined respectively by XRD and fretting tester in air of 10% to 90% RH and under the load of 1 to 10 N. With increasing substrate temperature, the edge orientation evolves in the MoSx coating, and the relative content of edge-to-basal orientation becomes large. The tribological performance of coatings gets deteriorated. Compared with MoS, coatings on TiN/H13, CrN/H13 and MoS /Ti multilayer, MoS coating on H13 substrate has a lower load bearing capacity, and worn away easily under higher normal load 5N or ION and in air of 90% RH during the fretting process. The friction and wear properties of MoS, coatings on TiN/H13 and CrN/H13 (dual-layer) are slight better than that of MoS, /Ti multilayer under the normal load tested and in air of<10%to90%RH.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .90 2 0 6 0 2 2 )
文摘MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.