The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films ...A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.展开更多
The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deform...The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from shallow non-uniform slip lines to dense and uniform slip bands.Different slip traces in the same deformation condition were observed,suggesting that the slip traces in the single crystal are controlled by different types and arrangement mechanisms of mobile dislocation.To clarify the relationship between slip behavior and dislocation arrangement,TEM and AFM analyses were performed.Significant discrepancy between the mobility of screw segments and edge segments caused by double cross-slip multiplication mechanism is the reason why different slip features were witnessed.During the whole slip deformation process,screw dislocations play a dominant role and they are inclined to form wall-substructures by interaction and entanglement.With the development of dislocation accumulation,the entangled dislocation walls evolve into dislocation cells with higher stability.展开更多
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Project (2005CB623904) supported by the National Basic Research Program of ChinaProject (30770586) supported by the National Natural Science Foundation of China+1 种基金Project (31011120049) supported by the Australia-China special fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of ChinaProject (2010ZDKG-96) supported by the major Subject of "13115" Programs of Shaan’xi Province, China
文摘A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.
基金financially supported by the Major Science and Technology Project of Shaanxi Province,China(No.2020zdzx04-02-02)the Key Research and Development Program of Shaanxi,China(Nos.2019ZDLGY05-04 and 2019ZDLGY05-06)the National key Research and Development Program(No.2017YFB0306003)。
文摘The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from shallow non-uniform slip lines to dense and uniform slip bands.Different slip traces in the same deformation condition were observed,suggesting that the slip traces in the single crystal are controlled by different types and arrangement mechanisms of mobile dislocation.To clarify the relationship between slip behavior and dislocation arrangement,TEM and AFM analyses were performed.Significant discrepancy between the mobility of screw segments and edge segments caused by double cross-slip multiplication mechanism is the reason why different slip features were witnessed.During the whole slip deformation process,screw dislocations play a dominant role and they are inclined to form wall-substructures by interaction and entanglement.With the development of dislocation accumulation,the entangled dislocation walls evolve into dislocation cells with higher stability.
基金National Key Technology R&D Program(2012BAI18B02)National Natural Science Foundation of China(31100693/C100302)+2 种基金Major State Basic Research Development Program of China(2012CB619102)National High Technology Research and Development Program of China(2011AA030101)Industrial Research Projects of Shaanxi Province(2012K07-03)
基金National Key Research and Development Program(2018YFA0702900)National Natural Science Foundation of China(52173305,52101061,52233017,52203384)+4 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04000000)China Postdoctoral Science Foundation(2020M681004,2021M703276)IMR Innovation Foundation(2022-PY12)Ling Chuang Research Project of China National Nuclear CorporationYouth Innovation Promotion Association,CAS。