In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system...In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.展开更多
Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly impro...Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).展开更多
A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films ...A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS)...The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), differential scanning calorimetry(DSC), X-ray diffraction(XRD) and tensile test. The results show that the main phases are S(Al2CuMg), T(Al2Mg3Zn3) and Mg Zn2, with a small amount of Al7Cu2 Fe and Al3 Zr in the as-cast 7X50 alloy. The volume fraction of the dendritic-network structure and residual phase decreases gradually during the homogenization. After homogenization at 470 °C for 24 h and then 482 °C for 12 h, the T(Al2Mg3Zn3) phase disappears and minimal S(Al2CuMg) phase remains, while almost no change has happened for Al7Cu2 Fe. There is a strong endothermic peak at 477.8 °C in the DSC curve of as-cast alloy. A new endothermic peak appears at 487.5 °C for the sample homogenized at 470 °C for 1 h. However, this endothermic peak disappears after being homogenized at 482 °C for 24 h. The T(Al2Mg3Zn3) phase cannot be observed by XRD, which is consistent with that T phase is the associated one of S(Al2CuMg) phase and Mg Zn2 phase. The volume fraction of recrystallized grains is substantially less in the plate with pre-homogenization treatment. The strength and fracture toughness of the plate with pre-homogenization treatment are about 15 MPa and 3.3 MPa·m1/2 higher than those of the material with conventional homogenization treatment.展开更多
Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal ...Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 °C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 °C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.展开更多
Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were de...Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.展开更多
The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The ...The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The better combination between strength(ultimate tensile strength: 295 MPa; yield strength: 224 MPa) and ductility(22.9%) can be obtained for the AM50 sheet rolled at the roll temperature of 200 °C with the roll speed of 5 m/min. The yield stress depends strongly on roll temperature, while the texture intensity in rolled sheets is more sensitive to roll speed during hot rolling. Increasing rolling temperature or roll speed can improve the mechanical anisotropy of AM50 rolled sheets.展开更多
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind...A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.展开更多
The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results...The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.展开更多
The effects of aging treatment on the microstructures and mechanical properties of extruded AM50 + xCa alloys (x=0, 1, 2 wt.%) were studied. The results indicated the secondary phase Mgl7Al12 precipitated from the ...The effects of aging treatment on the microstructures and mechanical properties of extruded AM50 + xCa alloys (x=0, 1, 2 wt.%) were studied. The results indicated the secondary phase Mgl7Al12 precipitated from the saturated α-Mg solid solution while Al2Ca changed slightly when the aging time was increased. The hardness of extruded AM50 + xCa al- loys increased initially to its peak, and then dropped to reach its original hardness with the increase in aging time. With the increase in aging temperature, the hardness of the AM50 + 2Ca ahoy decreased, whereas the hardness of AM50 and AM50 + 1Ca alloys decreased in the initial stages of aging treatment and increased in the later stages of aging treatment. The tensile strengths of AM50 and AM50 + 1Ca alloys increased after aging treatment for the precipitation of Mg17Al12 phase, which increases the resistance against dislocation movement at the grain boundary; with increase in aging temperature, their tensile strengths increased. For AM50 + 2Ca alloy, the tensile strength declined after aging at 150℃ and 175℃, while it increased slightly at 200℃. The ductility of AM50 + xCa alloys (x = 0, 1, 2 wt.%) declined after aging treatment.展开更多
Hot compression behavior of Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe alloy with an equiaxed(α+β) starting microstructure was investigated by isothermal compression test and optical microscopy. Based on the true strain-stress d...Hot compression behavior of Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe alloy with an equiaxed(α+β) starting microstructure was investigated by isothermal compression test and optical microscopy. Based on the true strain-stress data with temperature correction, constitutive models with a high accuracy were developed and processing maps were established. Strain inhomogeneity at different locations in the compressed sample is reduced by raising temperature, leading to a uniform distribution of α phases. For the temperature range of 800-840 ℃ with a strain rate of 10 s^-1, the transformed volume fraction of α phase increases and the average grain size of α phase decreases slightly with increasing the temperature, indicating co-existence of dynamic recovery and dynamic recrystallization. Flow localization and faint β grain boundaries are observed at the strain rate of 10 s^-1 in the temperature range of 860-900 ℃. The processing map analysis shows that hot working of Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe alloy should be conducted with the strain rate lower than 0.01 s^-1 to extend its workability.展开更多
In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy...In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components.展开更多
The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of...The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.展开更多
The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to...The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.展开更多
By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact materia...By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact material are acquired under low voltage,resistive load and small current at 400 Hz and 50 Hz. By means of an electricity-ray analytical balance,SEM and EDAX,the weighing values of the contact materials and the changes of AgCdO,AgNi,AgC and AgW contact material surface profile and micro-area constituent are obtained and analyzed. The arc erosion causes of silver-based alloy contact materials at 400 Hz and 50 Hz are also discussed.展开更多
Prior to thixoextrusion, the microstructural evolution of semi-solid AM50A magnesium alloy prepared by the recrystallisation and partial remelting (RAP) route was investigated.The effect of compressive ratio on micros...Prior to thixoextrusion, the microstructural evolution of semi-solid AM50A magnesium alloy prepared by the recrystallisation and partial remelting (RAP) route was investigated.The effect of compressive ratio on microstructure of semi-solid AM50A magnesium alloy was studied.Furthermore, tensile properties of thixoextruded components were determined.The results showed that the occurrence of recrystallised grains was closely associated with the location of the first liquid formed above the solidus.With prolonging holding time, deformed microstructure was penetrated, causing fragmentation, which resulted in the decrease of average grain size.Moreover, prolonging holding time was favorable for the improvement of the degree of spheroidization due to the increase in the amount of liquid.With the increase in compressive ratio, the size of solid grain decreased, the degree of spheroidization was improved during partial remelting, and the tensile properties of thixoextruded AM50A components were improved.The tensile properties for AM50A magnesium alloy thixoextruded from starting material produced by the RAP route were better than those of the same alloy produced by die-casting and thixomolding.展开更多
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft...According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.展开更多
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at ...The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.展开更多
基金China Scholarship Council for the award of fellowship and funding(No.202006370022).
文摘In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.
文摘Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).
基金Project (2005CB623904) supported by the National Basic Research Program of ChinaProject (30770586) supported by the National Natural Science Foundation of China+1 种基金Project (31011120049) supported by the Australia-China special fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of ChinaProject (2010ZDKG-96) supported by the major Subject of "13115" Programs of Shaan’xi Province, China
文摘A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Project(2011KJZX1-2)supported by the Science and Technology Development Fund of Aluminum Corporation of China
文摘The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), differential scanning calorimetry(DSC), X-ray diffraction(XRD) and tensile test. The results show that the main phases are S(Al2CuMg), T(Al2Mg3Zn3) and Mg Zn2, with a small amount of Al7Cu2 Fe and Al3 Zr in the as-cast 7X50 alloy. The volume fraction of the dendritic-network structure and residual phase decreases gradually during the homogenization. After homogenization at 470 °C for 24 h and then 482 °C for 12 h, the T(Al2Mg3Zn3) phase disappears and minimal S(Al2CuMg) phase remains, while almost no change has happened for Al7Cu2 Fe. There is a strong endothermic peak at 477.8 °C in the DSC curve of as-cast alloy. A new endothermic peak appears at 487.5 °C for the sample homogenized at 470 °C for 1 h. However, this endothermic peak disappears after being homogenized at 482 °C for 24 h. The T(Al2Mg3Zn3) phase cannot be observed by XRD, which is consistent with that T phase is the associated one of S(Al2CuMg) phase and Mg Zn2 phase. The volume fraction of recrystallized grains is substantially less in the plate with pre-homogenization treatment. The strength and fracture toughness of the plate with pre-homogenization treatment are about 15 MPa and 3.3 MPa·m1/2 higher than those of the material with conventional homogenization treatment.
基金Project(51075099)supported by the National Natural Science Foundation of ChinaProject(E201038)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(HIT.NSRIF.2013007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011RFQXG010)supported by the Harbin City Young Scientists Foundation,ChinaProject(LBH-T1102)supported by Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 °C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 °C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.
基金Project(2012 DFG51540)supported by the Ministry of Science and Technology of China
文摘Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.
基金Project (51204003) supported by the National Natural Science Foundation of ChinaProject (KJ2011A051) supported by the Scientific Research Foundation of Education Department of Anhui Province, China
文摘The conventional hot rolling of AM50 alloy at different roll temperatures and speeds was performed to investigate the effects of finish-rolling conditions on the mechanical properties and texture of rolled sheet. The better combination between strength(ultimate tensile strength: 295 MPa; yield strength: 224 MPa) and ductility(22.9%) can be obtained for the AM50 sheet rolled at the roll temperature of 200 °C with the roll speed of 5 m/min. The yield stress depends strongly on roll temperature, while the texture intensity in rolled sheets is more sensitive to roll speed during hot rolling. Increasing rolling temperature or roll speed can improve the mechanical anisotropy of AM50 rolled sheets.
基金Project(2014CB644002)supported by the National Basic Research and Development Project of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China
文摘A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.
基金Financial support from Turkey Council of Higher Education(YOK) Scholarship for Faruk's PhD Study in Helmholtz-Zentrum Geesthacht HZG is also appreciated
文摘The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.
基金This work was financially supported by the International Cooperation Foundation of Shanghai Science and Technology Committee of China (No. 02SL002) and the Regional Council of Rhone-Alpes of France.
文摘The effects of aging treatment on the microstructures and mechanical properties of extruded AM50 + xCa alloys (x=0, 1, 2 wt.%) were studied. The results indicated the secondary phase Mgl7Al12 precipitated from the saturated α-Mg solid solution while Al2Ca changed slightly when the aging time was increased. The hardness of extruded AM50 + xCa al- loys increased initially to its peak, and then dropped to reach its original hardness with the increase in aging time. With the increase in aging temperature, the hardness of the AM50 + 2Ca ahoy decreased, whereas the hardness of AM50 and AM50 + 1Ca alloys decreased in the initial stages of aging treatment and increased in the later stages of aging treatment. The tensile strengths of AM50 and AM50 + 1Ca alloys increased after aging treatment for the precipitation of Mg17Al12 phase, which increases the resistance against dislocation movement at the grain boundary; with increase in aging temperature, their tensile strengths increased. For AM50 + 2Ca alloy, the tensile strength declined after aging at 150℃ and 175℃, while it increased slightly at 200℃. The ductility of AM50 + xCa alloys (x = 0, 1, 2 wt.%) declined after aging treatment.
基金Project(BS2013CL034)supported by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,ChinaProject(51401115)supported by the National Natural Science Foundation of ChinaProject(GN2013001)supported by Independent Innovation Foundation of Shandong University,China
文摘Hot compression behavior of Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe alloy with an equiaxed(α+β) starting microstructure was investigated by isothermal compression test and optical microscopy. Based on the true strain-stress data with temperature correction, constitutive models with a high accuracy were developed and processing maps were established. Strain inhomogeneity at different locations in the compressed sample is reduced by raising temperature, leading to a uniform distribution of α phases. For the temperature range of 800-840 ℃ with a strain rate of 10 s^-1, the transformed volume fraction of α phase increases and the average grain size of α phase decreases slightly with increasing the temperature, indicating co-existence of dynamic recovery and dynamic recrystallization. Flow localization and faint β grain boundaries are observed at the strain rate of 10 s^-1 in the temperature range of 860-900 ℃. The processing map analysis shows that hot working of Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe alloy should be conducted with the strain rate lower than 0.01 s^-1 to extend its workability.
基金Project(2019B010943001)supported by Key-area Research and Development Program of Guangdong Province,ChinaProject(2020)supported by the Fund of State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components.
基金Project(2012ZX04010081)supported by the National Key Technologies R&D Program of ChinaProject(cstc2009aa3012-1)supported by the Science and Technology Committee of Chongqing,ChinaProject(CDJZR12130045)supported by the Fundamental Research Funds for the Central Universities,China
文摘The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.
基金Project(2009ZE56014)supported by the Aeronautical Science Foundation of ChinaProject(gf200901008)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,China
文摘The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.
基金supported by the Hunan Natural Science Foundation in China (No.05JJ40068)
文摘By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact material are acquired under low voltage,resistive load and small current at 400 Hz and 50 Hz. By means of an electricity-ray analytical balance,SEM and EDAX,the weighing values of the contact materials and the changes of AgCdO,AgNi,AgC and AgW contact material surface profile and micro-area constituent are obtained and analyzed. The arc erosion causes of silver-based alloy contact materials at 400 Hz and 50 Hz are also discussed.
基金Project(51005217) supported by the National Natural Science Foundation of China
文摘Prior to thixoextrusion, the microstructural evolution of semi-solid AM50A magnesium alloy prepared by the recrystallisation and partial remelting (RAP) route was investigated.The effect of compressive ratio on microstructure of semi-solid AM50A magnesium alloy was studied.Furthermore, tensile properties of thixoextruded components were determined.The results showed that the occurrence of recrystallised grains was closely associated with the location of the first liquid formed above the solidus.With prolonging holding time, deformed microstructure was penetrated, causing fragmentation, which resulted in the decrease of average grain size.Moreover, prolonging holding time was favorable for the improvement of the degree of spheroidization due to the increase in the amount of liquid.With the increase in compressive ratio, the size of solid grain decreased, the degree of spheroidization was improved during partial remelting, and the tensile properties of thixoextruded AM50A components were improved.The tensile properties for AM50A magnesium alloy thixoextruded from starting material produced by the RAP route were better than those of the same alloy produced by die-casting and thixomolding.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
基金Project(50901063) supported by the National Natural Science Foundation of ChinaProject(2007DS0414, 2007BS05006) supported by the Science and Technology Program of Shangdong Province, ChinaProject supported by the Open Research Fund from State Key Laboratory of Rolling and Automation, Northeastern University, China
文摘The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.