Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emiss...Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emission scanning electron microscope( FE-SEM) with energy dispersive spectrometer( EDS). Shear strength of Mo-Cu/Cr18-Ni8 lap joint was measured by electromechanical universal testing machine. An excellent Mo-Cu/Cr18-Ni8 joint with a shear strength of 155 MPa was achieved at 980 ℃ for 20 min. Brazed joint was mainly comprised of eutectic structure in the center of brazing seam,matrix structure and lump structure. Ni-Cu( Mo) and Ni-Fe solid solution were at the interface beside Mo-Cu composite and Cr18-Ni8 stainless steel,respectively. Shear fracture exhibited mixed ductile-brittle fracture feature with trans-granular fracture,ductile dimples and tearing edges. Fracture originated from the interface between brazing seam and Mo-Cu composite.展开更多
基金supported by Shandong Natural Science Foundation(ZR2015EM040)
文摘Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emission scanning electron microscope( FE-SEM) with energy dispersive spectrometer( EDS). Shear strength of Mo-Cu/Cr18-Ni8 lap joint was measured by electromechanical universal testing machine. An excellent Mo-Cu/Cr18-Ni8 joint with a shear strength of 155 MPa was achieved at 980 ℃ for 20 min. Brazed joint was mainly comprised of eutectic structure in the center of brazing seam,matrix structure and lump structure. Ni-Cu( Mo) and Ni-Fe solid solution were at the interface beside Mo-Cu composite and Cr18-Ni8 stainless steel,respectively. Shear fracture exhibited mixed ductile-brittle fracture feature with trans-granular fracture,ductile dimples and tearing edges. Fracture originated from the interface between brazing seam and Mo-Cu composite.