Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i...Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.展开更多
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character...Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.展开更多
Using pulsed laser deposition, Fex-C1-x films on Si (100) substrates were prepared. At T=300 K and B=5 T a large positive MR of 138% was found in Fe0.011-C0.989 film. It is also found that when T<258 K, the MR of F...Using pulsed laser deposition, Fex-C1-x films on Si (100) substrates were prepared. At T=300 K and B=5 T a large positive MR of 138% was found in Fe0.011-C0.989 film. It is also found that when T<258 K, the MR of Fe0.011-C0.989 film is negative and when 258 K<T<340 K, the MR of the film is positive. The MR of the material is also found to be controlled by the measuring current and measuring voltage. When B=2000 Oe, the MR is 11.5% at 2.5 mA and is 35% at about 35 V. The material has also a giant electroresistance of 500% at 8 V.展开更多
ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Ra...ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.展开更多
The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microsc...The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microscope image of the cross-sectional profile of the SBT nanometer film are depicted. The memristive mechanism is inferred. The mathematical model M(q) = 12.3656 - 267.4038|q(t)|is calculated, where M(q) denotes the memristance depending on the quantity of electric charge, and q(t) denotes the quantity of electric charge depending on the time. The theoretical I-V characteristics of the SBT nanometer film are obtained by the mathematical model. The results show that the theoretical I-V characteristics are consistent with the measured I-V characteristics. Moreover, the mathematical model could guide the research on applications of the memristor.展开更多
Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/de...Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/desorption rate and excessive hydrogen absorption/desorption temperature limit the application of Mg-based hydrogen storage materials.The present paper reviews the advances in the research of Mg-based hydrogen storage film in recent years, including the advantage of the film, the function theory of fabricating method and its functional theory, and the influencing factors in the technological process. The research status worldwide is introduced in detail. By comparing pure Mg, Pd-caped Mg, nonpalladium capped Mg, and Mg alloy hydrogen storage films, an ideal tendency for producing Mg-based film is pointed out,for example, looking for a cheap metal element to replace the high-priced Pd, compositing Mg film with other hydrogen storage alloy of catalytic elements, and so on.展开更多
Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ...Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ phosphorylated to -PO(OH)2 group to endow the film with good chemisorption ability. Then La-based thin films were deposited on phosphorylated APTES-SAM in order to make good use of the chemisorption ability of -PO(OH)2 groups. The thickness of the film was determined with ellipsometer, while phase transformation and surface morphology, surface energy, phase composition were analyzed by means of atomic force microscope (AFM), contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that the terminal-NH2 groups could be completely transformed into desirable-PO(OH)2 groups after phosphorylation of APTES-SAM. Detailed XPS analysis of the La3+ peaks revealed that lanthanum element existed in the films in different states. As a result, conclusion could be made that lanthanum reacted with -PO(OH)2 groups on the surface of the substrate by chemical bond which would improve the bonding strength between the film and silicon substrate. Since the La-based thin films were well adhered to the silicon substrate, it might find promising application in the surface-modification of single-crystal Si and SiC in microelectromechanical systems (MEMS).展开更多
The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the comp...The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.展开更多
We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multila...We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance.展开更多
The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS)...The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.展开更多
The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemi...The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.展开更多
The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter o...The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz.展开更多
In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based...In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based(2-ME-based)process.The thickness values,crystallization properties,chemical structures,surface roughness values,and optical properties of In2O3 thin-films and the electrical characteristics of In2O3 TFTs are studied at different annealing temperatures.Thermal annealing at higher temperature leads to an increase in the saturation mobility(μsat) and a negative shift in the threshold voltage(VTH).The DIW-based processed In2O3-TFT annealed at 300℃ exhibits excellent device performance,and one annealed at 200℃ exhibits an acceptable μsat of 0.86 cm^2/V·s comparable to that of a-Si:H TFTs,whereas the 2-ME-based TFT annealed at 300℃ exhibits an abundant μsat of 1.65 cm^2/Vs and one annealed at 200℃ is inactive.The results are attributed to the fact that the DIW-based process induces a higher degree of oxidation and less defect states than the 2-ME-based process at the same temperature.The DIW-based process for fabricating the In2O3 TFT opens the way for the development of nontoxic,low-cost,and low-temperature oxide electronics.展开更多
The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the ch...The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.展开更多
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice...Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.展开更多
SmCo based films with excellent intrinsic magnetic properties have promising applications in micro-electro-mechanical system(MEMS).However,due to the complexity of phase composition and uncontrollable crystallization ...SmCo based films with excellent intrinsic magnetic properties have promising applications in micro-electro-mechanical system(MEMS).However,due to the complexity of phase composition and uncontrollable crystallization degree of SmCo hard magnetic phase in the film,both the coercivity(Hc)and remanence(Mr)of films are difficult to enhance simultaneously.In this paper,SmCo based films were deposited with a Cr underlayer and capping layer on single crystal Si substrates via magnetron sputtering process.The effects of annealing parameters and Sm/Co atomic ratio on the phase structure and coercivity of films are discussed.By adjusting the Sm/Co atomic ratio from 1:5 to 1:4,Co soft magnetic phase disappears and the single phase SmCo5 is obtained,leading to the increase of coercivity of the films from 30 to 34 kOe.The influence of deposition temperature and Cu doping on magnetic properties of SmCo based films was investigated.When the deposition temperature increases from room temperature to 250℃,the coercivity will further increase from 34 to 51 kOe.However,a severe kink is observed in the demagnetization curves due to the poor exchanged coupling.An analysis of transmission electron microscopy(TEM)confirms that the average size of non-hard magnetic amorphous phase exceeds the effective exchanged coupling length of SmCo5,which contributes to the decoupling and low remanence ratio.Therefore,doping Cu and applying a post-annealing process can significantly improve the crystallization degree of the films.Both the coercivity and the remanence ratio of the demagnetization curves are greatly enhanced.We propose a plausible strategy to prepare the SmCo based films with high coercivity and remanence ratio by temperature and chemical optimization,which can be utilized in high performed MEMS devices.展开更多
A bolaform (BNC10) and single-headed (HNOA) amphiphilic Schiff bases containing naphthyl group were designed and their Langmuir-Blodgett films were investigated. It was found that both the LB films show acidichrom...A bolaform (BNC10) and single-headed (HNOA) amphiphilic Schiff bases containing naphthyl group were designed and their Langmuir-Blodgett films were investigated. It was found that both the LB films show acidichromism, i.e. a reversible color change upon alternatively exposing the films to HC1 and NH3 gases, respectively. It was further found that the bolaform Schiff bases film could trap NH3 gas during the acidichromic process.展开更多
The characteristics of the LB films of Schiff base aluminium(Ⅲ), tris(2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium(Ⅲ)[Al(TA12)_3], were studied. The surface pressure-area(π-A) isotherm of Al(TA12)_3 in...The characteristics of the LB films of Schiff base aluminium(Ⅲ), tris(2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium(Ⅲ)[Al(TA12)_3], were studied. The surface pressure-area(π-A) isotherm of Al(TA12)_3 in the pure water subphase was investigated. The molecular area, 0.48 nm^2, is one-third of the expected value that indicates the formation of an aggregate. The Langmuir-Blodgett(LB) films of Al(TA12)_3 were transferred and characterized. The UV-Vis spectra and the AFM image both confirmed that the J-aggregates formed. The polarized UV-Vis spectra indicated that the complex plane had to be oriented with an angle of about 30° to the substrate surface. The IR spectra suggested that the complexation took place between aluminium ions and the oxygen atoms of the ligand rather than the nitrogen atom.展开更多
The surface pressure-area (pi -A) isotherm of Schiff base aluminium (III), tris (2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium (III) (denoted as Al(TAl2)(3)), on pure water subphase was investigated. The m...The surface pressure-area (pi -A) isotherm of Schiff base aluminium (III), tris (2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium (III) (denoted as Al(TAl2)(3)), on pure water subphase was investigated. The molecular area, 0.48 nm(2), is one-third of expected value that indicated the aggregation took place. The Langmuir-Blodgett (LB) films of Al(TAl2), was transferred and characterized. The AFM image confirmed the formation of aggregates.展开更多
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
基金supported by Jiangsu Province Biomass Energy and Materials Laboratory,China(Grant No.JSBEM-S-202007).
文摘Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.
文摘Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.
基金This work was financially supported by the Ministry of Science and Technology of China (No. 2002CB613500) and National Natural Science Foundation of China (No. 50271034, No. 90401013).
文摘Using pulsed laser deposition, Fex-C1-x films on Si (100) substrates were prepared. At T=300 K and B=5 T a large positive MR of 138% was found in Fe0.011-C0.989 film. It is also found that when T<258 K, the MR of Fe0.011-C0.989 film is negative and when 258 K<T<340 K, the MR of the film is positive. The MR of the material is also found to be controlled by the measuring current and measuring voltage. When B=2000 Oe, the MR is 11.5% at 2.5 mA and is 35% at about 35 V. The material has also a giant electroresistance of 500% at 8 V.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142,11304160 and 11404147the National Basic Research Program of China under Grant No 2012CB921504+2 种基金the PAPD Projectthe Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No 13KJB140008the Foundation of Nanjing University of Posts and Telecommunications under Grant No NY213018
文摘ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.
基金Supported by the National Natural Science Foundation of China under Grant No 61473177the Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 2013371812009 and 20133718110011+4 种基金the Natural Science Foundation of Shandong Province under Grant No ZR2014FQ006the China Postdoctoral Science Foundation under Grant No 2015M582114the Shandong Postdoctoral Special Foundation under Grant No 201502017the Qingdao Science and Technology Plan Project under Grant No 15-9-1-39-jchthe Qingdao Postdoctoral Science Foundation
文摘The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microscope image of the cross-sectional profile of the SBT nanometer film are depicted. The memristive mechanism is inferred. The mathematical model M(q) = 12.3656 - 267.4038|q(t)|is calculated, where M(q) denotes the memristance depending on the quantity of electric charge, and q(t) denotes the quantity of electric charge depending on the time. The theoretical I-V characteristics of the SBT nanometer film are obtained by the mathematical model. The results show that the theoretical I-V characteristics are consistent with the measured I-V characteristics. Moreover, the mathematical model could guide the research on applications of the memristor.
基金Project supported by the Competitiveness Enhancement Program of National Research Tomsk Polytechnic University(Grant No.VIU-OEF-66/2019)
文摘Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/desorption rate and excessive hydrogen absorption/desorption temperature limit the application of Mg-based hydrogen storage materials.The present paper reviews the advances in the research of Mg-based hydrogen storage film in recent years, including the advantage of the film, the function theory of fabricating method and its functional theory, and the influencing factors in the technological process. The research status worldwide is introduced in detail. By comparing pure Mg, Pd-caped Mg, nonpalladium capped Mg, and Mg alloy hydrogen storage films, an ideal tendency for producing Mg-based film is pointed out,for example, looking for a cheap metal element to replace the high-priced Pd, compositing Mg film with other hydrogen storage alloy of catalytic elements, and so on.
基金Project supported by the National Natural Science Foundation of China (50475023)
文摘Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ phosphorylated to -PO(OH)2 group to endow the film with good chemisorption ability. Then La-based thin films were deposited on phosphorylated APTES-SAM in order to make good use of the chemisorption ability of -PO(OH)2 groups. The thickness of the film was determined with ellipsometer, while phase transformation and surface morphology, surface energy, phase composition were analyzed by means of atomic force microscope (AFM), contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that the terminal-NH2 groups could be completely transformed into desirable-PO(OH)2 groups after phosphorylation of APTES-SAM. Detailed XPS analysis of the La3+ peaks revealed that lanthanum element existed in the films in different states. As a result, conclusion could be made that lanthanum reacted with -PO(OH)2 groups on the surface of the substrate by chemical bond which would improve the bonding strength between the film and silicon substrate. Since the La-based thin films were well adhered to the silicon substrate, it might find promising application in the surface-modification of single-crystal Si and SiC in microelectromechanical systems (MEMS).
文摘The corrosion resistance of a low concentration chromate passive film for zinc based alloy coated steel wires was assessed by salt spray and electrochemical corrosion tests. XPS and AES analyses showed that the composition of such chromate passive film was S 5 5, Na 3 4, C 11 8, Ti 7 9, O 41 6, Cr 13 7, Zn 16 0.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2013AA032205the National Natural Science Foundation of China under Grant Nos 11474018,51272022 and 61575019+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 20120009130005 and 20130009130001the Technological Development Contract under Grant No HETONG-150188-04E008
文摘We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51337002,51077028,51502063 and 51307046the Foundation of Harbin Science and Technology Bureau of Heilongjiang Province under Grant No RC2014QN017034
文摘The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.
基金supported by the Special Fund for Talent of Wuhan Institute of Technology,China(No.237127)the"Fellowship for Junior Researchers"from Politecnico di Torino and Regione Piemonte,Italy
文摘The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.
文摘The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675024)the National Basic Research Program of China(Grant No.2014CB643600)
文摘In this study,indium oxide(In2O3) thin-film transistors(TFTs) are fabricated by two kinds of low temperature solution-processed technologies(Ta ≤ 300℃),i.e.,water-based(DIW-based) process and alkoxide-based(2-ME-based)process.The thickness values,crystallization properties,chemical structures,surface roughness values,and optical properties of In2O3 thin-films and the electrical characteristics of In2O3 TFTs are studied at different annealing temperatures.Thermal annealing at higher temperature leads to an increase in the saturation mobility(μsat) and a negative shift in the threshold voltage(VTH).The DIW-based processed In2O3-TFT annealed at 300℃ exhibits excellent device performance,and one annealed at 200℃ exhibits an acceptable μsat of 0.86 cm^2/V·s comparable to that of a-Si:H TFTs,whereas the 2-ME-based TFT annealed at 300℃ exhibits an abundant μsat of 1.65 cm^2/Vs and one annealed at 200℃ is inactive.The results are attributed to the fact that the DIW-based process induces a higher degree of oxidation and less defect states than the 2-ME-based process at the same temperature.The DIW-based process for fabricating the In2O3 TFT opens the way for the development of nontoxic,low-cost,and low-temperature oxide electronics.
基金Supported by the National Natural Science Foundation of China(Nos.51075228 50721004)
文摘The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY12A01002)the National Natural Science Foundation of China(Grant Nos.11204058 and 21073162)the Hangzhou Dianzi University,China(Grant No.KYF09150603)
文摘Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.
基金Project supported by the National Key R&D Program of China(2022YFB3505700,2022YFB3807900)National Natural Science Foundation of China(51901079)+2 种基金R&D(Research and Development)Plan in Key Areas of Guangdong Province(SDZX2021002,212021032611700001)Natural Science Foundation of Guangdong Province(2020A1515010736,2021A1515010451)the Guangzhou Municipal Science and Technology Program(202007020008)。
文摘SmCo based films with excellent intrinsic magnetic properties have promising applications in micro-electro-mechanical system(MEMS).However,due to the complexity of phase composition and uncontrollable crystallization degree of SmCo hard magnetic phase in the film,both the coercivity(Hc)and remanence(Mr)of films are difficult to enhance simultaneously.In this paper,SmCo based films were deposited with a Cr underlayer and capping layer on single crystal Si substrates via magnetron sputtering process.The effects of annealing parameters and Sm/Co atomic ratio on the phase structure and coercivity of films are discussed.By adjusting the Sm/Co atomic ratio from 1:5 to 1:4,Co soft magnetic phase disappears and the single phase SmCo5 is obtained,leading to the increase of coercivity of the films from 30 to 34 kOe.The influence of deposition temperature and Cu doping on magnetic properties of SmCo based films was investigated.When the deposition temperature increases from room temperature to 250℃,the coercivity will further increase from 34 to 51 kOe.However,a severe kink is observed in the demagnetization curves due to the poor exchanged coupling.An analysis of transmission electron microscopy(TEM)confirms that the average size of non-hard magnetic amorphous phase exceeds the effective exchanged coupling length of SmCo5,which contributes to the decoupling and low remanence ratio.Therefore,doping Cu and applying a post-annealing process can significantly improve the crystallization degree of the films.Both the coercivity and the remanence ratio of the demagnetization curves are greatly enhanced.We propose a plausible strategy to prepare the SmCo based films with high coercivity and remanence ratio by temperature and chemical optimization,which can be utilized in high performed MEMS devices.
基金This work was supported by the National Natural Science Foundation of China(Nos.20533050 and 90306002)the Fund of the Chinese Academy of Sciences
文摘A bolaform (BNC10) and single-headed (HNOA) amphiphilic Schiff bases containing naphthyl group were designed and their Langmuir-Blodgett films were investigated. It was found that both the LB films show acidichromism, i.e. a reversible color change upon alternatively exposing the films to HC1 and NH3 gases, respectively. It was further found that the bolaform Schiff bases film could trap NH3 gas during the acidichromic process.
基金Supported by the National Natural Science Foundation of China(No. 29973026, 20073016).
文摘The characteristics of the LB films of Schiff base aluminium(Ⅲ), tris(2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium(Ⅲ)[Al(TA12)_3], were studied. The surface pressure-area(π-A) isotherm of Al(TA12)_3 in the pure water subphase was investigated. The molecular area, 0.48 nm^2, is one-third of the expected value that indicates the formation of an aggregate. The Langmuir-Blodgett(LB) films of Al(TA12)_3 were transferred and characterized. The UV-Vis spectra and the AFM image both confirmed that the J-aggregates formed. The polarized UV-Vis spectra indicated that the complex plane had to be oriented with an angle of about 30° to the substrate surface. The IR spectra suggested that the complexation took place between aluminium ions and the oxygen atoms of the ligand rather than the nitrogen atom.
基金the NSFC (29973026, 29773017) and Beijing Natural Science Foundation (2992007) for the provision of financial support.
文摘The surface pressure-area (pi -A) isotherm of Schiff base aluminium (III), tris (2-hydroxy-5-nitro-N-dodecyl-benzylideneaminato) aluminium (III) (denoted as Al(TAl2)(3)), on pure water subphase was investigated. The molecular area, 0.48 nm(2), is one-third of expected value that indicated the aggregation took place. The Langmuir-Blodgett (LB) films of Al(TAl2), was transferred and characterized. The AFM image confirmed the formation of aggregates.
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.