期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electron-transfer enhanced MoO2-Ni heterostructures as a highly efficient pH-universal catalyst for hydrogen evolution 被引量:3
1
作者 Benzhi Wang Hexiu Huang +3 位作者 Meilin Huang Puxuan Yan Tayirjan Taylor Isimjan Xiulin Yang 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第6期841-849,共9页
Hydrogen is one of the most promising energy carriers to replace fossil fuels and electrolyzing water to produce hydrogen is a very effective method.However,designing highly active and stable non-precious metal hydrog... Hydrogen is one of the most promising energy carriers to replace fossil fuels and electrolyzing water to produce hydrogen is a very effective method.However,designing highly active and stable non-precious metal hydrogen evolution electrocatalysts that can be used in universal pH is a huge challenge.Here,we have reported a simple strategy to develop a highly active and durable non-precious MoO2-Ni electrocatalyst for hydrogen evolution reaction(HER)in a wide pH range.The MoO2-Ni catalyst exhibits a superior electrocatalytic performance with low overpotentials of 46,69,and 84 mV to reach-10 mA cm-2 in 1.0 M KOH,0.5 M H2SO4,and 1.0 M PBS electrolytes,respectively.At the same time,the catalyst also shows outstanding stability over a wide pH range.It is particularly noted that the catalytic performance of MoO2-Ni in alkaline solution is comparable to the highest performing catalysts reported.The outstanding HER performance is mainly attributed to the collective effect of the rational morphological design,electronic structure engineering,and strong interfacial coupling between MoO2 and Ni in heterojunctions.This work provides a viable method for the synthesis of inexpensive and efficient HER electrocatalysts for the use in wide pH ranges. 展开更多
关键词 moo2-ni pH-universal ELECTRON-TRANSFER hydrogen evolution ELECTROLYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部