The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A...The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.展开更多
Molybdenum oxide(MoO_(3)), with superior features of multi-electrochemical states, high theoretical capacitance, and low cost, is a desirable supercapacitor electrode material but suffers from low conductivity and ins...Molybdenum oxide(MoO_(3)), with superior features of multi-electrochemical states, high theoretical capacitance, and low cost, is a desirable supercapacitor electrode material but suffers from low conductivity and insufficient active sites. The MoO_(3) capacitance can be largely amplified by introducing oxygen(O) vacancies, but the mechanisms at the atomic scale are still ambiguous.Herein, O vacancies are created at the O2 and O3 sites in the MoO_(3) nanobelts by carbonization to maximize the supercapacitance in the MoO_(2.39). The supercapacitive storage is mainly ascribed to the proton adsorption at the O1 sites to create Mo–OH, leading to an expansion of the interlayer spacing along the lattice B-axis. Roughly 98% of the initial supercapacitance is retained after 1000 cycles,due to the reversible change in the interlayer spacing. Our results provide an insight into the oxygen deficiency-related mechanisms of the supercapacitive performance at the atomic scale and devise a facile method to enhance the supercapacitance for energy storage and conversion.展开更多
Sub-stoichiometric MoO_(3−x)nanostructures with plasmonic absorption via creating oxygen vacancies have attracted extensive attentions for many intriguing applications.However,the synthesis of one-dimensional(1D)plasm...Sub-stoichiometric MoO_(3−x)nanostructures with plasmonic absorption via creating oxygen vacancies have attracted extensive attentions for many intriguing applications.However,the synthesis of one-dimensional(1D)plasmonic MoO_(3−x)nanostructures with widely tunable plasmonic absorption has remained a significant challenge because of their serious morphological destruction and phase change with increasing the concentration of oxygen vacancies.Here we demonstrate a surface-ligand protected reduction strategy for the synthesis of 1D MoO_(3−x)nanobelts with tunable plasmonic absorption in a wide wavelength range from 200 to 2,500 nm.Polyethylene glycol(PEG-400)is used as both the reductant to produce oxygen vacancies and the surface protected ligands to maintain 1D morphology during the formation process of MoO_(3−x)nanobelts,enabling the widely tunable plasmonic absorption.Owing to their broad plasmonic absorption and unique 1D nanostructure,we further demonstrate the application of 1D MoO_(3−x)nanobelts as photothermal film for interfacial solar evaporator.The surface-ligand protected reduction strategy provides a new avenue for the developing plasmonic semiconductor oxides with maintained particle morphology and thus enriching their wide applications.展开更多
基金supported by Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)National Key Technology R&D Program(Grant No.2017YFB1401805)+1 种基金the China Postdoctoral Science Foundation(2019T120285,2018M641884)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z18235)。
文摘The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
基金financially supported by the Hong Kong Baptist University(No.RMGS-2019-1-03A)。
文摘Molybdenum oxide(MoO_(3)), with superior features of multi-electrochemical states, high theoretical capacitance, and low cost, is a desirable supercapacitor electrode material but suffers from low conductivity and insufficient active sites. The MoO_(3) capacitance can be largely amplified by introducing oxygen(O) vacancies, but the mechanisms at the atomic scale are still ambiguous.Herein, O vacancies are created at the O2 and O3 sites in the MoO_(3) nanobelts by carbonization to maximize the supercapacitance in the MoO_(2.39). The supercapacitive storage is mainly ascribed to the proton adsorption at the O1 sites to create Mo–OH, leading to an expansion of the interlayer spacing along the lattice B-axis. Roughly 98% of the initial supercapacitance is retained after 1000 cycles,due to the reversible change in the interlayer spacing. Our results provide an insight into the oxygen deficiency-related mechanisms of the supercapacitive performance at the atomic scale and devise a facile method to enhance the supercapacitance for energy storage and conversion.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2019JQ15)the National Natural Science Foundation of China(Nos.21671120 and 51972199).
文摘Sub-stoichiometric MoO_(3−x)nanostructures with plasmonic absorption via creating oxygen vacancies have attracted extensive attentions for many intriguing applications.However,the synthesis of one-dimensional(1D)plasmonic MoO_(3−x)nanostructures with widely tunable plasmonic absorption has remained a significant challenge because of their serious morphological destruction and phase change with increasing the concentration of oxygen vacancies.Here we demonstrate a surface-ligand protected reduction strategy for the synthesis of 1D MoO_(3−x)nanobelts with tunable plasmonic absorption in a wide wavelength range from 200 to 2,500 nm.Polyethylene glycol(PEG-400)is used as both the reductant to produce oxygen vacancies and the surface protected ligands to maintain 1D morphology during the formation process of MoO_(3−x)nanobelts,enabling the widely tunable plasmonic absorption.Owing to their broad plasmonic absorption and unique 1D nanostructure,we further demonstrate the application of 1D MoO_(3−x)nanobelts as photothermal film for interfacial solar evaporator.The surface-ligand protected reduction strategy provides a new avenue for the developing plasmonic semiconductor oxides with maintained particle morphology and thus enriching their wide applications.