A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the a...A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the acidity of the obtained nanoporous MoO3/ZrO2 mixed oxide were determined by means of XRD, N2 adsorption-desorption and NH3-TPD, respectively. The isobutane/butene alkylation over the MoO3/ZrO2 catalyst was carried out in a fixed bed reactor. The results reveal that ZrO2 in MoO3/ZrO2 exists mainly in the tetragonal phase, and the catalyst samples possess large specific surface areas as well as moderate acidity for isobutane/butene alkylation. Compared with samples prepared by impregnation and sol-gel processes, MoO3/ZrO2 mixed oxide samples prepared in this work have a better catalytic activity.展开更多
The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity a...The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.展开更多
A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃....A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O.The fresh catalyst showed above 90% NOx conversion at 201–459℃,which is applicable to diesel exhaust NOx purification(200–440℃).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300℃),while the activity was notably enhanced at high temperature(above 450℃).The aged CZW catalyst(hydrothermal aging at 700℃ for 8 hr)showed almost 80% NOx conversion at 229–550℃,while the V2O5–WO3/TiO2 catalyst presented above 80% NOx conversion at 308–370℃.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2–ZrO2 solid solution,amorphous WO3 phase and optimal acidity.In addition,the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.展开更多
文摘A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, eetyltrimethylammonium bromide(CTAB). The crystal structure and the acidity of the obtained nanoporous MoO3/ZrO2 mixed oxide were determined by means of XRD, N2 adsorption-desorption and NH3-TPD, respectively. The isobutane/butene alkylation over the MoO3/ZrO2 catalyst was carried out in a fixed bed reactor. The results reveal that ZrO2 in MoO3/ZrO2 exists mainly in the tetragonal phase, and the catalyst samples possess large specific surface areas as well as moderate acidity for isobutane/butene alkylation. Compared with samples prepared by impregnation and sol-gel processes, MoO3/ZrO2 mixed oxide samples prepared in this work have a better catalytic activity.
基金supported by the National Natural Science Foundation of China(21773106,21707066,21677069,and 21806077)the China Postdoctoral Science Foundation(2018M642206)~~
文摘The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.
基金supported by the National Natural Science Foundation of China(Nos.U1137603,21307047)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(No.LYJ1309)
文摘A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O.The fresh catalyst showed above 90% NOx conversion at 201–459℃,which is applicable to diesel exhaust NOx purification(200–440℃).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300℃),while the activity was notably enhanced at high temperature(above 450℃).The aged CZW catalyst(hydrothermal aging at 700℃ for 8 hr)showed almost 80% NOx conversion at 229–550℃,while the V2O5–WO3/TiO2 catalyst presented above 80% NOx conversion at 308–370℃.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2–ZrO2 solid solution,amorphous WO3 phase and optimal acidity.In addition,the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.