Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st...Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.展开更多
The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/...The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)hollow microsphere was successfully fabricated through solvothermal and in situ reduction methods.The results revealed that the optimal ternary 0.4 CN/BMO/9 Bi photocatalyst exhibited the highest photocatalytic efficiency toward rhodamine B(RhB)degradation with nine times that of pure BMO.The DRS and valence band of the X-ray photoelectron spectroscopy spectrum demonstrate that the band structure of 0.4 CN/BMO/9 Bi is a z-scheme structure.Quenching experiments also provided solid evidence that the·O^2-(at-0.33 eV)is the main species during dye degradation,and the conduction band of g-C3N4 is only the reaction site,demonstrating that the transfer of photogenerated charge carriers of g-C3N4/Bi2 MoO 6/Bi is through an indirect z-scheme structure.Thus,the enhanced photocatalytic performance was mainly ascribed to the synergetic effect of heterojunction structures between g-C3N4 and Bi2MoO6 and the SPR effect of Bi doping,resulting in better optical absorption ability and a lower combination rate of photogenerated charge carriers.The findings in this work provide insight into the synergism of heterostructures and the SPR absorption ability in wastewater treatment.展开更多
To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination pr...To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.展开更多
The suppression of the recombination of electrons and holes(e–h) and the enhancement of the light absorption of semiconductors are two key points toward efficient photocatalytic degradation.Here,we report a few-layer...The suppression of the recombination of electrons and holes(e–h) and the enhancement of the light absorption of semiconductors are two key points toward efficient photocatalytic degradation.Here,we report a few-layer g-C_3N_4/α-MoO_3 nanoneedles(flg-C_3N_4/α-MoO_3 NNs) all-solid-state Z-scheme mechanism photocatalyst synthesized via a typical hydrothermal method in a controlled manner.The recombination of the photo-induced e–h pairs could be effectively restrained by the Z-scheme passageway between the flg-C_3N_4 and α-MoO_3 NNs in the composite,which could also promise a high redox ability to degrade pollutants.And it became possible for the prepared photocatalyst to absorb light in a wide range of wavelengths.The detailed mechanism was studied by electron spin-resonance spectroscopy(ESR).The low-dimensional nanostructure of the two constituents(α-MoO_3 NNs with one-dimensional structure and flg-C_3N_4 with two-dimensional structure) endowed the composite with varieties of excellent physicochemical properties,which facilitated the transfer and diffusion of the photoelectrons and increased the specific surface area and the active sites.The 10 wt% flg-C_3N_4/α-MoO_3 NNs showed the best photocatalytic performance toward RhB degradation,the rate of which was 71.86%,~2.6 times higher than that ofα-MoO_3 NNs.展开更多
基金supported by the National Natural Science Foundation of China(51904059)Applied Basic Research Program of Liaoning(2022JH2/101300200)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515140188)Fundamental Research Funds for the Central Universities(N_(2)002005,N_(2)125004,N_(2)225044)。
文摘Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.
基金financially supported by the Science Foundation of China University of Petroleum,Beijing(2462017YJRC048,2462018BJC005)the National Natural Science Foundation of China(51802351)~~
文摘The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)hollow microsphere was successfully fabricated through solvothermal and in situ reduction methods.The results revealed that the optimal ternary 0.4 CN/BMO/9 Bi photocatalyst exhibited the highest photocatalytic efficiency toward rhodamine B(RhB)degradation with nine times that of pure BMO.The DRS and valence band of the X-ray photoelectron spectroscopy spectrum demonstrate that the band structure of 0.4 CN/BMO/9 Bi is a z-scheme structure.Quenching experiments also provided solid evidence that the·O^2-(at-0.33 eV)is the main species during dye degradation,and the conduction band of g-C3N4 is only the reaction site,demonstrating that the transfer of photogenerated charge carriers of g-C3N4/Bi2 MoO 6/Bi is through an indirect z-scheme structure.Thus,the enhanced photocatalytic performance was mainly ascribed to the synergetic effect of heterojunction structures between g-C3N4 and Bi2MoO6 and the SPR effect of Bi doping,resulting in better optical absorption ability and a lower combination rate of photogenerated charge carriers.The findings in this work provide insight into the synergism of heterostructures and the SPR absorption ability in wastewater treatment.
基金supported by the Open Project Program of Hubei Key Laboratory of Animal Nutrition and Feed Science,Wuhan Polytechnic University(No.201808)Hubei Important Project of Technological Innovation(2018ABA094)~~
文摘To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.
基金supported by National Natural Science Foundation of China (21476097,21776118,21507046)Six Talent Peaks Project in Jiangsu Province (2014-JNHB-014)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The suppression of the recombination of electrons and holes(e–h) and the enhancement of the light absorption of semiconductors are two key points toward efficient photocatalytic degradation.Here,we report a few-layer g-C_3N_4/α-MoO_3 nanoneedles(flg-C_3N_4/α-MoO_3 NNs) all-solid-state Z-scheme mechanism photocatalyst synthesized via a typical hydrothermal method in a controlled manner.The recombination of the photo-induced e–h pairs could be effectively restrained by the Z-scheme passageway between the flg-C_3N_4 and α-MoO_3 NNs in the composite,which could also promise a high redox ability to degrade pollutants.And it became possible for the prepared photocatalyst to absorb light in a wide range of wavelengths.The detailed mechanism was studied by electron spin-resonance spectroscopy(ESR).The low-dimensional nanostructure of the two constituents(α-MoO_3 NNs with one-dimensional structure and flg-C_3N_4 with two-dimensional structure) endowed the composite with varieties of excellent physicochemical properties,which facilitated the transfer and diffusion of the photoelectrons and increased the specific surface area and the active sites.The 10 wt% flg-C_3N_4/α-MoO_3 NNs showed the best photocatalytic performance toward RhB degradation,the rate of which was 71.86%,~2.6 times higher than that ofα-MoO_3 NNs.