Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase tr...Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.展开更多
A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca...A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.展开更多
Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not...Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not been reported, however, to prepare La_2O_3 ultrafine particles with urea as the hydrolytic agent. This method is easy to operate, and the materials are cheap and easily available, besides, it is easy to obtain homogeneous spherical precursors of ultrafine particles. The present, paper describes the preparation of La_2O_3 ultrafine particles with urea as hydrolytic agent, and observes some of its characteristics.展开更多
文摘Ultrafine particles prepared by evaporating pure Fe in CH4 atmosphere using arc-dischargeheating method, were found to consist of Fe-C solid solution, γ-Fe and Fe3C phases. EfFect of annealing temperature on phase transformation and hyperfine interactions has been investigated by Mossbauer spectroscopy, X-ray diffraction (XRD), differential thermal analysis and thermogravimetry (DTA-TG), transmission electron microscopy (TEM), oxygen determination and vibrating sample magnetometer (VSM) measurements. It was observed that phase transformation of γ-Fe to α-Fe occurs during annealing in vacuum. The mechanism causing the change of hyperfine interactions with annealing temperature differs for Fe-C solution and interstitial compounds. DifFerence of hyperfine interactions of Fe-C solid solution in the starting sample and its annealed samples is ascribed to the improvement of activation of interstitial carbon atoms. Stress-relieving in structure of annealed Fe3C particle can result in a weak influence on hyperfine interactions. Parameters fitted to the Mossbauer spectra show the existence of superparamagnetism in all the samples. Absorbed and combined oxygen on particle surface of the starting sample were determined.
基金Supported by the Three-Item Science & Technology Foundation of Fujian Province(K02017)
文摘A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.
文摘Y_2O_3 ultrafine particles have been prepared by means of precipitation in Japan and U.S.A., and ultrafine particles of rare earth oxide have been prepared with dicarboxyl precipitate by Wang Zenglin et al. It has not been reported, however, to prepare La_2O_3 ultrafine particles with urea as the hydrolytic agent. This method is easy to operate, and the materials are cheap and easily available, besides, it is easy to obtain homogeneous spherical precursors of ultrafine particles. The present, paper describes the preparation of La_2O_3 ultrafine particles with urea as hydrolytic agent, and observes some of its characteristics.