As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the m...As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.展开更多
The nanocomposite films were prepared by direct intercalation of poly(ethylene oxide) and PEO into MoO 3 xerogel via sol-gel route.The electrochromic behavior and the chemical conditions of Li + ions were investigat...The nanocomposite films were prepared by direct intercalation of poly(ethylene oxide) and PEO into MoO 3 xerogel via sol-gel route.The electrochromic behavior and the chemical conditions of Li + ions were investigated by cyclic voltammograms,UV-visible spectral transmittance and XPS.The results show that the cycling efficiency and the reversibility of insertion/extraction of Li + ions in (PEO) 1MoO 3·nH 2O nanocomposite film were improved.The intercalation of PEO into MoO 3 xerogel modulated the wavelength range of electrochromism and enhanced the electrochromic efficiency.Two different chemical conditions of Li + ions existing in the interlayer and interstitial positions of MoO 3 lattice were observed in MoO 3 xerogel and (PEO) 1MoO 3·nH 2O nanocomposite films.展开更多
Compared with the planar two-dimensional(2D)all-solid-state thin film batteries(TFBs),threedimensional(3D)all-solid-state TFBs with interdigitated contact between electrode and electrolyte possess great advantage in a...Compared with the planar two-dimensional(2D)all-solid-state thin film batteries(TFBs),threedimensional(3D)all-solid-state TFBs with interdigitated contact between electrode and electrolyte possess great advantage in achieving both high energy and power densities.Herein,we report a facile fabrication of vertically aligned oxygen-deficient a-MoO3-x nanoflake arrays(3D MO_(x))using metal Mo target by direct current(DC)magnetron sputtering.By utilizing the 3D MO_(x)cathode,amorphous lithium phosphorus oxynitride solid electrolyte,and lithium thin film anode,3D solid-state TFBs have been successfully fabricated,exhibiting high specific capacity(266 mAh g^(-1)at 50 mA g^(-1)),good rate performance(110 mAh g^(-1)at 1000mA g^(-1)),and excellent cycle performance(92.7%capacity retention after 1000 cycles)in comparison with the 2D TFBs using the planar MO_(x)thin film as cathode.The superior electrochemical performance of the 3D TFBs can be attributed to the 3D architecture of the cathode,maximizing the cathode/electrolyte interface while retaining the short Lit diffusion length.The charge/discharge measurements of the 3D MO_(x)cathode in liquid electrolyte,however,exhibit fast capacity fading,demonstrating the advantage of using transition metal oxide as cathode in solid-state batteries.展开更多
Ti-doped WO3 films were prepared by the mid-frequency dual-target magnetron sputtering method. The structure and electrochromic properties of the Ti-doped WO3 films were analysed by X-Ray diffraction (XRD), Raman sp...Ti-doped WO3 films were prepared by the mid-frequency dual-target magnetron sputtering method. The structure and electrochromic properties of the Ti-doped WO3 films were analysed by X-Ray diffraction (XRD), Raman spectroscopy, spectrophotometer, cyclic chronoam- perometry and atomic force microscopy (AFM). The results indicate that the erystallinity decrease after the doping of titanium, the channels for ion injection and extraction increase, the responding speed with 5.1% titanium doped becomes faster, and its circle life increases more than four times compared with the undoped WO3 film. In the coloured state, the W-O-W bonds decrease, but the W = O bonds increase. Since the W-O-W bonds break down for Li+ ions' injection and more W = O bonds form, it is more convenient to inject Li+ ions into the Ti-doped film than undoped film because more W-O-W bonds break down in the coloured state.展开更多
The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately ...The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition.The electrochromic properties of the single WO_(3) thin film were optimized,and TiO_(2)/NiO composite films showed better electrochromic performance than that of the single NiO film.WO_(3)/Ag and TiO_(2)/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO_(3)/Ag‒TiO_(2)/NiO electrochromic device.The response time(tc=4.08 s,tb=1.08 s),optical modulation range(35.91%),and coloration efficiency(30.37 cm^(2)·C^(-1))of this electrochromic device are better than those of WO_(3)-NiO and WO_(3)/Ag-NiO electrochromic devices.This work provides a novel research idea for the performance enhancement of electrochromic smart windows.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
Poly (ethylene axide) (PEO) modified WO 3 thin films were prepared on glass substrates with special temperature.The sol gel transition proess was investigated by using DTA-TG,SEM and XRD.The electrochemical characte...Poly (ethylene axide) (PEO) modified WO 3 thin films were prepared on glass substrates with special temperature.The sol gel transition proess was investigated by using DTA-TG,SEM and XRD.The electrochemical characteristic of the films was studied by cyclic voltmmetry measurement.The results show that PEO has heavy effects on the crystallization of WO 3 during structure evolution because of the interaction between PEO and WO 3.It increases the crystallization temperature of the gels and thus improves the electrochemical properties and cyclic life of WO 3 film as electrochromic materials.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10979069)the "Hundred Talent Program" of Chinese Academy of Sciences
文摘As essential electrochromic(EC) materials are related to energy savings in fenestration technology,tungsten oxide(WO3) films have been intensively studied recently.In order to achieve better understanding of the mechanism of EC properties,and thus facilitate optimization of device performance,clarification of the correlation between cation storage and transfer properties and the coloration performance is needed.In this study,transparent polycrystalline and amorphous WO3 thin films were deposited on SnO2:F-coated glass substrates by the pulsed laser deposition technique.Investigation into optical transmittance in a wavelength range of 400-800 nm measured at a current density of 130 μA·cm-2 with the applied potential ranging from 3.2 to 2.2 V indicates that polycrystalline films have a larger optical modulation of ~ 30% at 600 nm and a larger coloration switch time of 95 s in the whole wavelength range compared with amorphous films(~ 24% and 50 s).Meanwhile,under the same conditions,polycrystalline films show a larger lithium storage capacity corresponding to a Li/W ratio of 0.5,a smaller lithium diffusion coefficient(2×10-12cm2·s-1 for Li/W=0.24) compared with the amorphous ones,which have a Li/W ratio of 0.29 and a coefficient of ~2.5×10-11cm2·s-1 as Li/W=0.24.These results demonstrate that the large optical modulation relates to the large lithium storage capacity,and the fast coloration transition is associated with fast lithium diffusion.
文摘The nanocomposite films were prepared by direct intercalation of poly(ethylene oxide) and PEO into MoO 3 xerogel via sol-gel route.The electrochromic behavior and the chemical conditions of Li + ions were investigated by cyclic voltammograms,UV-visible spectral transmittance and XPS.The results show that the cycling efficiency and the reversibility of insertion/extraction of Li + ions in (PEO) 1MoO 3·nH 2O nanocomposite film were improved.The intercalation of PEO into MoO 3 xerogel modulated the wavelength range of electrochromism and enhanced the electrochromic efficiency.Two different chemical conditions of Li + ions existing in the interlayer and interstitial positions of MoO 3 lattice were observed in MoO 3 xerogel and (PEO) 1MoO 3·nH 2O nanocomposite films.
基金This work was supported by National Natural Science Foundation of China(No.51572129,51772154,51811530100)International S&T Cooperation Program of China(No.2016YFE0111500)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20170036)SEM and XRD experiment was performed at the Materials Characterization Facility of Nanjing University of Science and Technology.
文摘Compared with the planar two-dimensional(2D)all-solid-state thin film batteries(TFBs),threedimensional(3D)all-solid-state TFBs with interdigitated contact between electrode and electrolyte possess great advantage in achieving both high energy and power densities.Herein,we report a facile fabrication of vertically aligned oxygen-deficient a-MoO3-x nanoflake arrays(3D MO_(x))using metal Mo target by direct current(DC)magnetron sputtering.By utilizing the 3D MO_(x)cathode,amorphous lithium phosphorus oxynitride solid electrolyte,and lithium thin film anode,3D solid-state TFBs have been successfully fabricated,exhibiting high specific capacity(266 mAh g^(-1)at 50 mA g^(-1)),good rate performance(110 mAh g^(-1)at 1000mA g^(-1)),and excellent cycle performance(92.7%capacity retention after 1000 cycles)in comparison with the 2D TFBs using the planar MO_(x)thin film as cathode.The superior electrochemical performance of the 3D TFBs can be attributed to the 3D architecture of the cathode,maximizing the cathode/electrolyte interface while retaining the short Lit diffusion length.The charge/discharge measurements of the 3D MO_(x)cathode in liquid electrolyte,however,exhibit fast capacity fading,demonstrating the advantage of using transition metal oxide as cathode in solid-state batteries.
文摘Ti-doped WO3 films were prepared by the mid-frequency dual-target magnetron sputtering method. The structure and electrochromic properties of the Ti-doped WO3 films were analysed by X-Ray diffraction (XRD), Raman spectroscopy, spectrophotometer, cyclic chronoam- perometry and atomic force microscopy (AFM). The results indicate that the erystallinity decrease after the doping of titanium, the channels for ion injection and extraction increase, the responding speed with 5.1% titanium doped becomes faster, and its circle life increases more than four times compared with the undoped WO3 film. In the coloured state, the W-O-W bonds decrease, but the W = O bonds increase. Since the W-O-W bonds break down for Li+ ions' injection and more W = O bonds form, it is more convenient to inject Li+ ions into the Ti-doped film than undoped film because more W-O-W bonds break down in the coloured state.
基金supported by the Natural Science Foundation of Chongqing City(Grant Nos.CSTB2022NSCQ-MSX0751 and cstc2021jcyj-msxmX0500)the Education Department Project of Jilin Province(Grant No.JJKH20220726KJ)+1 种基金the Science and Technology Department Project of Jilin Province(Grant No.20200201077JC)the National Natural Science Foundation of China(Grant No.U2141239).
文摘The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition.The electrochromic properties of the single WO_(3) thin film were optimized,and TiO_(2)/NiO composite films showed better electrochromic performance than that of the single NiO film.WO_(3)/Ag and TiO_(2)/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO_(3)/Ag‒TiO_(2)/NiO electrochromic device.The response time(tc=4.08 s,tb=1.08 s),optical modulation range(35.91%),and coloration efficiency(30.37 cm^(2)·C^(-1))of this electrochromic device are better than those of WO_(3)-NiO and WO_(3)/Ag-NiO electrochromic devices.This work provides a novel research idea for the performance enhancement of electrochromic smart windows.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘Poly (ethylene axide) (PEO) modified WO 3 thin films were prepared on glass substrates with special temperature.The sol gel transition proess was investigated by using DTA-TG,SEM and XRD.The electrochemical characteristic of the films was studied by cyclic voltmmetry measurement.The results show that PEO has heavy effects on the crystallization of WO 3 during structure evolution because of the interaction between PEO and WO 3.It increases the crystallization temperature of the gels and thus improves the electrochemical properties and cyclic life of WO 3 film as electrochromic materials.