MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings w...MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.展开更多
The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to ...The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.展开更多
The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positi...The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.展开更多
In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets co...In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets composed of common layered transition metal sulfide materials(MoS2)have demonstrated promise as high-capacity anode materials for lithium-ion batteries(LIBs).Nevertheless,their practical application is severely limited by the tendency of monolayer nanosheets to restack due to strong van der Waals forces,dramatic volume changes during successive cycles,and low intrinsic conductivity.Recent research advances have shown that composite structures and nanowire morphologies with specific morphologies effectively overcome these issues.This paper reviews the recent research progress on molybdenum disulfide-based composites as anode materials for LIBs and discusses in detail the struc-tural characteristics of pure molybdenum disulfide and other composite forms of molybdenum disulfide.In addition,the phase engineering,defect engineering,and lithium storage mechanisms of molybdenum disulfide and the synthesis of molybdenum disulfide-based nanocomposites by different preparation methods are focused on.Finally,we review the design(structure),recent developments,and challenges of novel anode materials and consider their electrochemical performance in Li-ion batteries.展开更多
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .90 2 0 6 0 2 2 )
文摘MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.
基金supported by the National Natural Science Foundation of China(22178258,21975181)。
文摘The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.
基金the financial support of National Natural Science Foundation of China(Nos.52075458 and U2141211)Sichuan Science Foundation for Distinguished Young Scholars(No.2023NSFSC1957)the Analytical and Testing Center of Southwest Jiaotong University for support of the scanning electron microscopy(SEM)and Raman measurements.
文摘The bonded MoS_(2)solid lubricant coating is an effective measure to mitigate the fretting wear of AISI 1045 steel.In this work,the amino functionalized MoS_(2)was protonated with acetic acid to make the MoS_(2)positively charged.The directional arrangement of protonated MoS2 in the coating was achieved by electrophoretic deposition under the electric field force.The bonded directionally aligned MoS_(2)solid lubricant coating showed high adaptability to various loads and excellent lubrication performance under all three working conditions.At a load of 10 N,the friction coefficient and wear volume of the coating with 5 wt%protonated MoS_(2)decreased by 20.0%and 37.2%compared to the pure epoxy coating,respectively,and by 0.07%and 16.8%than the randomly arranged MoS_(2)sample,respectively.The remarkable lubricating properties of MoS_(2)with directional alignment were attributed to its effective load-bearing and mechanical support,barrier effect on longitudinal extension of cracks,and the formation of a continuous and uniform transfer film.
基金supported by the China Postdoctoral Science Foundation (grant Nos.2019M662405,2019M650612)Natural Science Foundation of Shandong Province (grant Nos.ZR2019BF047,ZR2020KE059)+1 种基金School City Integration in Zibo (grant No.2019ZBXC299)Heilongjiang Touyan Team Program,and the Fundamental Research Funds for the Central Universities (grant No.HIT.0CEF.2021003).
文摘In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets composed of common layered transition metal sulfide materials(MoS2)have demonstrated promise as high-capacity anode materials for lithium-ion batteries(LIBs).Nevertheless,their practical application is severely limited by the tendency of monolayer nanosheets to restack due to strong van der Waals forces,dramatic volume changes during successive cycles,and low intrinsic conductivity.Recent research advances have shown that composite structures and nanowire morphologies with specific morphologies effectively overcome these issues.This paper reviews the recent research progress on molybdenum disulfide-based composites as anode materials for LIBs and discusses in detail the struc-tural characteristics of pure molybdenum disulfide and other composite forms of molybdenum disulfide.In addition,the phase engineering,defect engineering,and lithium storage mechanisms of molybdenum disulfide and the synthesis of molybdenum disulfide-based nanocomposites by different preparation methods are focused on.Finally,we review the design(structure),recent developments,and challenges of novel anode materials and consider their electrochemical performance in Li-ion batteries.