In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C com...In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.展开更多
Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
基金Projects(51221001,51272213,51072166)supported by the National Natural Science Foundation of ChinaProject(GBKY1021)supported by the Fundamental Research Foundation of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.