期刊文献+
共找到7,211篇文章
< 1 2 250 >
每页显示 20 50 100
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
1
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
2
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
3
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax Graphene oxide CO_(2) capture
下载PDF
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
4
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE Catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
5
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry
6
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/O3-type layered oxides Na distribution Oxygen redox chemistry Hydrostability
下载PDF
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode:From O3-Type to O2-Type Structural Design
7
作者 Guohua Zhang Xiaohui Wen +2 位作者 Yuheng Gao Renyuan Zhang Yunhui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期81-102,共22页
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H... Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed. 展开更多
关键词 Lithium-ion batteries Li-rich layered oxide Voltage decay Migration of transition metal ions O2-type structural design
下载PDF
Na_2O的含量对MoSi_2/Oxide系发热元件材料力学性能的影响 被引量:2
8
作者 王刚 江莞 赵世柯 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2003年第1期103-108,共6页
对比了脱Na处理工艺前后Na2O含量变化对MoSi2/Oxide系发热元件材料力学性能的影响.研究结果表明,虽然Na2O含量的高低对发热体材料常温力学性能影响不大,但是对发热元件材料高温力学性能有重要影响.主要表现在:经1573K热处理100h后脱Na... 对比了脱Na处理工艺前后Na2O含量变化对MoSi2/Oxide系发热元件材料力学性能的影响.研究结果表明,虽然Na2O含量的高低对发热体材料常温力学性能影响不大,但是对发热元件材料高温力学性能有重要影响.主要表现在:经1573K热处理100h后脱Na材料仍拥有很高的强度和韦伯分布;而且经过真空脱Na后材料的高温蠕变特性也有了明显改善,在1243和1303K的条件下脱Na材料的蠕变速率分别是未脱Na材料的2/5和1/3以下.另外,Na2O含量对材料延性脆性转变温度(BDTT)也有重要影响,脱Na材料的BDTT较未脱Na材料升高约100K. 展开更多
关键词 mosi2/oxide系发热元件 材料 二硅化钼 NA2O 韦伯分布 蠕变特性 BDTT 氧化钠 真空热处理
下载PDF
Na_2O对MoSi_2/oxide发热元件特性的影响 被引量:2
9
作者 赵世柯 王刚 江莞 《材料科学与工艺》 EI CAS CSCD 2002年第2期167-169,共3页
为了克服半导体热处理炉中MoSi2发热元件的低温氧化问题,通过添加高Na2O粘土获得了由MoSi2/oxide复合材料制成的发热元件,考查了脱Na工艺前后MoSi2/oxide发热元件使用特性的变化.研究结果表明,脱Na工艺较好地解决了半导体制品热处理装... 为了克服半导体热处理炉中MoSi2发热元件的低温氧化问题,通过添加高Na2O粘土获得了由MoSi2/oxide复合材料制成的发热元件,考查了脱Na工艺前后MoSi2/oxide发热元件使用特性的变化.研究结果表明,脱Na工艺较好地解决了半导体制品热处理装置中石英玻璃管的失透问题,使发热元件的弯曲强度和高温蠕变特性有了明显地改善,提高了发热元件的使用寿命. 展开更多
关键词 mosi2/oxide 二硅化钼 发热元件 蠕变特性 半导体 热处理炉 氧化钠 复合材料 制备装置
下载PDF
MoSi_(2)涂层高温富氧火焰冲刷失效机理研究 被引量:1
10
作者 罗靖川 朱昌发 +4 位作者 刘坤 王钺淞 徐向毅 杨冠军 陈林 《中国材料进展》 CAS CSCD 北大核心 2024年第4期355-365,共11页
MoSi_(2)高温氧化时表面可生成保护性SiO_(2),有望用于推力室喷管内表面抗高温氧化涂层材料。然而,在1800℃及以上超高温火焰冲刷考核条件下,MoSi_(2)涂层发生快速损伤失效。为揭示MoSi_(2)涂层超高温冲刷失效机理,系统研究了推力室喷... MoSi_(2)高温氧化时表面可生成保护性SiO_(2),有望用于推力室喷管内表面抗高温氧化涂层材料。然而,在1800℃及以上超高温火焰冲刷考核条件下,MoSi_(2)涂层发生快速损伤失效。为揭示MoSi_(2)涂层超高温冲刷失效机理,系统研究了推力室喷管不同位置涂层的氧化行为和损伤规律。结果表明:涂层损伤分为5个特征区域,分别为前缘、喉部、过渡段、中部和尾部,其中喉部发生整个涂层剥落,尾部涂层仍保持完整。MoSi_(2)涂层的主要失效形式为:超高温下MoSi_(2)涂层晶界快速氧化和氧化膜快速挥发,产生晶界裂纹,晶界裂纹合并形成网状、贯穿性、大尺度的纵向裂纹,将MoSi_(2)涂层分割成岛状区域。在热冲击载荷作用下,岛状区域MoSi_(2)涂层发生剥落失效。指出了MoSi_(2)涂层超高温冲刷腐蚀机理,为发展推力室喷管用长寿命MoSi_(2)超高温抗氧化涂层提供了理论方向。 展开更多
关键词 mosi_(2)涂层 氧化膜 晶界 纵向裂纹 剥落
下载PDF
Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo_(2)O_(4) spinel 被引量:1
11
作者 Jun Wan Zhiao Wu +11 位作者 Guangyu Fang Jinglin Xian Jiao Dai Jiayue Guo Qingxiang Li Yongfei You Kaisi Liu Huimin Yu Weilin Xu Huiyu Jiang Minggui Xia Huanyu Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期226-235,共10页
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine... Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR. 展开更多
关键词 2D materials SPINEL Microwave ELECTROCATALYSIS Urea oxidation reaction
下载PDF
Mechanism of microarc oxidation on AZ91D Mg alloy induced byβ-Mg_(17)Al_(12) phase 被引量:1
12
作者 Dajun Zhai Xiaoping Li Jun Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期712-724,共13页
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer... This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample. 展开更多
关键词 AZ91D Mg alloy microarc oxidation friction stir processing ZrO_(2) TiO_(2) β-Mg_(17)Al_(12)
下载PDF
Duodenal-jejunal bypass improves hypothalamic oxidative stress and inflammation in diabetic rats via glucagon-like peptide 1-mediated Nrf2/HO-1 signaling 被引量:1
13
作者 Huai-Jie Wang Li-Bin Zhang +4 位作者 Si-Peng Sun Qing-Tao Yan Zhi-Qin Gao Fang-Ming Fu Mei-Hua Qu 《World Journal of Diabetes》 SCIE 2024年第2期287-304,共18页
BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal je... BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway. 展开更多
关键词 Duodenal jejunal bypass surgery Type 2 diabetes mellitus Neuron apoptosis INFLAMMATORY oxidative stress Hypothalamic injury
下载PDF
Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu_(2)O and CoO on nickel foam 被引量:1
14
作者 Yewon Oh Jayaraman Theerthagiri +3 位作者 M.L.Aruna Kumari Ahreum Min Cheol Joo Moon Myong Yong Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期145-154,共10页
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and... The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel. 展开更多
关键词 Pulsed laser irradiation in liquids Water and furfural oxidation In situ Raman spectroscopy CoO/NiO/nickel foam Cu_(2)O/Nio/nickel foam 2-furoic acid
下载PDF
Pilot Test of Preparing 2-Alkylanthraquinone Using Alkylation-Oxidation Technology
15
作者 Zheng Bo Qian Jianguo +6 位作者 Shi Peng Pan Zhiyong Qie Siyuan Zhang Yueqin Fei Jianqi Qiao Liang Zong Baoning 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期88-97,共10页
To expedite the development of industrial technology for producing 2-alkylanthraquinone,a novel pilot test of alkylation-oxidation technology was conducted.The process mainly included anthracene alkylation,separation ... To expedite the development of industrial technology for producing 2-alkylanthraquinone,a novel pilot test of alkylation-oxidation technology was conducted.The process mainly included anthracene alkylation,separation of anthracene and 2-alkylanthracene,oxidation of 2-alkylanthracene,and product purification.Optimal alkylation conditions yielded a 91.1%conversion of anthracene and a 71.73%selectivity for 2-alkylanthracene.To address the separation problem of anthracene and 2-alkylanthracene,solvent-assisted distillation technology was developed,resulting in a 98.9%purity of 2-alkylanthracene and a 91.82%separation yield.When the molar ratio of H2O_(2) to 2-alkylanthracene was 7:1,a 98.96%conversion of 2-alkylanthracene and a 99.94%selectivity for 2-alkylanthraquinone were achieved.A novel composition of 2-alkylanthraquinone,including 2-tert-butylanthraquinone,2-tert-amylanthraquinone,and 2-hexylanthraquinone,was developed.This composition could be effectively separated and purified through a combination of crystallization and washing processes.The elemental composition of the product met the existing standards,and its hydrogenation performance closely matched that of commercially available 2-tert-amylanthraquinone products. 展开更多
关键词 anthracene 2-alkylanthracene 2-alkylanthraquinone ALKYLATION oxidATION hydrogen peroxide
下载PDF
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
16
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 Xiangxing Meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen Liu Qun Huang Xu Yang Jing Li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell oxidative damage Nrf2 signalling pathway
下载PDF
Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO_(2) to C_(2+) products 被引量:5
17
作者 Zi-Yang Zhang Hao Tian +3 位作者 Lei Bian Shi-Ze Liu Yuan Liu Zhong-Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期90-97,I0004,共9页
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c... The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR. 展开更多
关键词 Electrochemical CO_(2)reduction reaction C_(2+)products Cu-Zn alloy Cu-Zn aluminate oxide Interface
下载PDF
Regeneration of copper catalysts mediated by molybdenum-based oxides
18
作者 Changyu Ding Xiaoli Pan +7 位作者 Isla E.Gow Xia Wu Hongchen Cao Zhounan Yu Xiaoyan Liu Xiaofeng Yang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期618-625,I0013,共9页
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here... Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications. 展开更多
关键词 Cu-based catalysts AGGREGATION REGENERATION oxidATION CO_(2)hydrogenation
下载PDF
Oxygen-vacancy-rich MnO_(x)supported RuO_(x)for efficient base-free oxidation of 5-hydroxymethylfurfural and 5-methoxymethylfurfural to 2,5-furandicarboxylic acid
19
作者 Jiali Wu Weizhen Xie +7 位作者 Yining Zhang Xixian Ke Tianyuan Li Huayu Fang Yong Sun Xianhai Zeng Lu Lin Xing Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期670-683,I0015,共15页
2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o... 2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions. 展开更多
关键词 Base-free oxidation Oxygen-vacancy-rich 5-HYDROXYMETHYLFURFURAL 5-Methoxymethylfurfural 2 5-Furandicarboxylic acid
下载PDF
Expediting^(*)OH accumulation kinetics on metal-organic frameworks-derived CoOOH with CeO_(2) “accelerator” for electrocatalytic 5-hydroxymethylfurfural oxidation valorization
20
作者 Peiyun Zhou Haokun Pan +3 位作者 Guangtong Hai Xiang Liu Xiubing Huang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期721-732,共12页
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b... In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process. 展开更多
关键词 CeO_(2) Metal-organic frameworks 5-Hydroxymethylfurfural oxidation reaction HETEROINTERFACE Reconstruction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部