Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon...Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.展开更多
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were...Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.展开更多
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th...The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.展开更多
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi...TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.展开更多
The purpose of this paper is to review the current state of development of new composite materials for advanced aircraft engines. The advantages and disadvantages of Ti-base.NiAl-base, and MoSi_2-base composites as re...The purpose of this paper is to review the current state of development of new composite materials for advanced aircraft engines. The advantages and disadvantages of Ti-base.NiAl-base, and MoSi_2-base composites as replacements for today's Ni-base superalloys are discussed from the standpoint of key technical issues. current status, and future directions. Results describing progress in both improved understanding of the mechanisms of deformation and fracture, and improved material performance will be covered.展开更多
The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investi...The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
The equilibrium phase and adiabatic temperature for combustion synthesis of Al_2O_3/B_4C employing Al, B_2O_3 and C as starting materials is analyzed by both conventional and CALPHAD method. The adiabatic temperature ...The equilibrium phase and adiabatic temperature for combustion synthesis of Al_2O_3/B_4C employing Al, B_2O_3 and C as starting materials is analyzed by both conventional and CALPHAD method. The adiabatic temperature calculed by CALPHAD method is significantly lower than that obtained by conventional method. The CALPHAD calculation also reveals that the equilibrium phases presented at the adiabatic temperature are different to the desired composites. The adiabatic temperature in this system can be lowered by introducing Al_2O_3 as diluents. The maximum amount of Al_2O_3 that can be added to the system while maintain a self-sustaining combusion mode is 1.3 mol.展开更多
Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of ...Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.展开更多
基金the Natural Science Fundation of Guangxi Province(No.0575104)the Guangxi Education Department Key Fund(No.2003-22)+1 种基金the Guangxi Fund of New Century Qualified Scholars(No.2002210)the National Science Foundation(No.50672016)
文摘Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.
文摘Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.
文摘The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.
基金The work was supported by the Foundation of Aerospace Innovation Fund and the National Natural Science Foundation of China(No.90505015)the Foundation of National Key Laboratory for Remanufacturing.
文摘TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct.
文摘The purpose of this paper is to review the current state of development of new composite materials for advanced aircraft engines. The advantages and disadvantages of Ti-base.NiAl-base, and MoSi_2-base composites as replacements for today's Ni-base superalloys are discussed from the standpoint of key technical issues. current status, and future directions. Results describing progress in both improved understanding of the mechanisms of deformation and fracture, and improved material performance will be covered.
基金financially supported by the National Natural Science Foundation of China(Nos.51072104 and 51272141)Tai Shan Scholars Project of Shandong Province,China(No.ts20110828)
文摘The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.
基金supported by the Funding of National Key Laboratory,the Pre-Research Funding,China(No.6142907200301)the Key Laboratory of Lightweight High Strength Structural Materials and State Key Laboratory of Powder Metallurgy in Central South University for financial support。
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
文摘The equilibrium phase and adiabatic temperature for combustion synthesis of Al_2O_3/B_4C employing Al, B_2O_3 and C as starting materials is analyzed by both conventional and CALPHAD method. The adiabatic temperature calculed by CALPHAD method is significantly lower than that obtained by conventional method. The CALPHAD calculation also reveals that the equilibrium phases presented at the adiabatic temperature are different to the desired composites. The adiabatic temperature in this system can be lowered by introducing Al_2O_3 as diluents. The maximum amount of Al_2O_3 that can be added to the system while maintain a self-sustaining combusion mode is 1.3 mol.
基金the National Natural Science Foundation of China(No.59925207)the State Key Lab-oratory of New Nonferrous Metal Materials,Gansu University of Technology(No.2004016)for their financial support to this work.
文摘Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.