Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))an...Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.展开更多
基金supported by Innovation Support Programme(Soft Science Research)Project Achievements of Jiangsu Province(No.BK20231514)the National College Student Innovation and Entrepreneurship Training Program(NO.202310293173K).
文摘Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.