Along with the rapid development of communications,the Internet,and smart terminals,mobile Internet has become a hot topic with both opportunities and challenges.In this article,a new perspective on edge content deliv...Along with the rapid development of communications,the Internet,and smart terminals,mobile Internet has become a hot topic with both opportunities and challenges.In this article,a new perspective on edge content delivery service for mobile Internet is described,based on cooperating terminals.A mobile cloud architecture named Cloudlet Aided Cooperative Terminals Service Environment(CACTSE) is proposed as an edge network service environment.The Service Manager(SM),a cloudlet like module,is introduced into the local service domain in order to manage the in-domain terminals and help coordinate the content delivery requests for better bandwidth efficiency as well as user experience.The reference model is presented in this article with architecture and mechanism design.Moreover,the research progress and potential technology trends of CACTSE are analysed based on the related R&D directions.展开更多
It is discussed with the design and implementation of an architecture for a mobile robot to navigate in dynamic and anknown indoor environments. The architecture is based on the framework of Open Robot Control Softwar...It is discussed with the design and implementation of an architecture for a mobile robot to navigate in dynamic and anknown indoor environments. The architecture is based on the framework of Open Robot Control Software at KTH (OROCOS@KTH), which is also discussed and evaluated to navigate indoor efficiently, a new algorithm named door-like-exit detection is proposed which employs 2D feature oft. door and extracts key points of pathway from the raw data of a laser scanner. As a hybrid architecture, it is decomposed into several basic components which can be classified as either deliberative or reactive. Each component can concurrently execute and communicate with another. It is expansible and transferable and its components are reusable.展开更多
Recently,analyzing big data on the move is booming.It requires that the hardware resource should be low volume,low power,light in weight,high-performance,and highly scalable whereas the management software should be f...Recently,analyzing big data on the move is booming.It requires that the hardware resource should be low volume,low power,light in weight,high-performance,and highly scalable whereas the management software should be flexible and consume little hardware resource.To meet these requirements,we present a system named SOCA-DOM that encompasses a mobile system-on-chip array architecture and a two-tier“software-defined”resource manager named Chameleon.First,we design an Ethernet communication board to support an array of mobile system-on-chips.Second,we propose a two-tier software architecture for Chameleon to make it flexible.Third,we devise data,configuration,and control planes for Chameleon to make it“software-defined”and in turn consume hardware resources on demand.Fourth,we design an accurate synthetic metric that represents the computational power of a computing node.We employ 12 Apache Spark benchmarks to evaluate SOCA-DOM.Surprisingly,SOCA-DOM consumes up to 9.4x less CPU resources and 13.5x less memory than Mesos which is an existing resource manager.In addition,we show that a 16-node SOCA-DOM consumes up to 4x less energy than two standard Xeon servers.Based on the results,we conclude that an array architecture with fine-grained hardware resources and a software-defined resource manager works well for analyzing big data on the move.展开更多
基金supported by the "New Generation Broadband Wireless Mobile Communication Network"Key Project under Grant No. 2011ZX03005004-02the National Natural Science Foundation of China under Grants No. 60971125,No.61101119+2 种基金the Funds for Creative Research Groups of China under Grant No. 61121001the European Commission FP7 Project EVANS under Grant No. 2010-269323the Program for Changjiang Scholars and Innovative Research Team in University of China under Grant No. IRT1049
文摘Along with the rapid development of communications,the Internet,and smart terminals,mobile Internet has become a hot topic with both opportunities and challenges.In this article,a new perspective on edge content delivery service for mobile Internet is described,based on cooperating terminals.A mobile cloud architecture named Cloudlet Aided Cooperative Terminals Service Environment(CACTSE) is proposed as an edge network service environment.The Service Manager(SM),a cloudlet like module,is introduced into the local service domain in order to manage the in-domain terminals and help coordinate the content delivery requests for better bandwidth efficiency as well as user experience.The reference model is presented in this article with architecture and mechanism design.Moreover,the research progress and potential technology trends of CACTSE are analysed based on the related R&D directions.
基金The project is supported by European Open Robot Control Software Founda-tion(No.IST-2000-31064), National Natural Science Foundation of China(No.60475031) and the Swedish Foundation for Strategic Research, Sweden.
文摘It is discussed with the design and implementation of an architecture for a mobile robot to navigate in dynamic and anknown indoor environments. The architecture is based on the framework of Open Robot Control Software at KTH (OROCOS@KTH), which is also discussed and evaluated to navigate indoor efficiently, a new algorithm named door-like-exit detection is proposed which employs 2D feature oft. door and extracts key points of pathway from the raw data of a laser scanner. As a hybrid architecture, it is decomposed into several basic components which can be classified as either deliberative or reactive. Each component can concurrently execute and communicate with another. It is expansible and transferable and its components are reusable.
基金the Key Research and Development Program of Guangdong Province of China under Grant No.2019B010155003the National Natural Science Foundation of China under Grant Nos.61672511,61702495,and 61802384the Shenzhen Institute of Artificial Intelligence and Robotics for Society,The Chinese University of Hong Kong,Shenzhen,and the Alibaba Innovative Research Project for Large-Scale Graph Pattern Discovery,Analysis,and Query Techniques.
文摘Recently,analyzing big data on the move is booming.It requires that the hardware resource should be low volume,low power,light in weight,high-performance,and highly scalable whereas the management software should be flexible and consume little hardware resource.To meet these requirements,we present a system named SOCA-DOM that encompasses a mobile system-on-chip array architecture and a two-tier“software-defined”resource manager named Chameleon.First,we design an Ethernet communication board to support an array of mobile system-on-chips.Second,we propose a two-tier software architecture for Chameleon to make it flexible.Third,we devise data,configuration,and control planes for Chameleon to make it“software-defined”and in turn consume hardware resources on demand.Fourth,we design an accurate synthetic metric that represents the computational power of a computing node.We employ 12 Apache Spark benchmarks to evaluate SOCA-DOM.Surprisingly,SOCA-DOM consumes up to 9.4x less CPU resources and 13.5x less memory than Mesos which is an existing resource manager.In addition,we show that a 16-node SOCA-DOM consumes up to 4x less energy than two standard Xeon servers.Based on the results,we conclude that an array architecture with fine-grained hardware resources and a software-defined resource manager works well for analyzing big data on the move.