Healthcare is a fundamental part of every individual’s life.The healthcare industry is developing very rapidly with the help of advanced technologies.Many researchers are trying to build cloud-based healthcare applic...Healthcare is a fundamental part of every individual’s life.The healthcare industry is developing very rapidly with the help of advanced technologies.Many researchers are trying to build cloud-based healthcare applications that can be accessed by healthcare professionals from their premises,as well as by patients from their mobile devices through communication interfaces.These systems promote reliable and remote interactions between patients and healthcare professionals.However,there are several limitations to these innovative cloud computing-based systems,namely network availability,latency,battery life and resource availability.We propose a hybrid mobile cloud computing(HMCC)architecture to address these challenges.Furthermore,we also evaluate the performance of heuristic and dynamic machine learning based task scheduling and load balancing algorithms on our proposed architecture.We compare them,to identify the strengths and weaknesses of each algorithm;and provide their comparative results,to show latency and energy consumption performance.Challenging issues for cloudbased healthcare systems are discussed in detail.展开更多
This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits ...This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.展开更多
On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains.Mobile cloud computing is one of these domains where complex computation tasks are offloa...On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains.Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’cognitive capacity.However,the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines(VMs).Furthermore,any delays at the cloud end would further aggravate the miseries of real-time tasks.To resolve these issues,this paper proposes an auto-scaling framework(ACF)that strives to maintain the quality of service(QoS)for the end users as per the service level agreement(SLA)negotiated assurance level for service availability.In addition,it also provides an innovative solution for dealing with the VM startup overheads without truncating the running tasks.Unlike the waiting cost and service cost tradeoff-based systems or threshold-rule-based systems,it does not require strict tuning in the waiting costs or in the threshold rules for enhancing the QoS.We explored the design space of the ACF system with the CloudSim simulator.The extensive sets of experiments demonstrate the effectiveness of the ACF system in terms of good reduction in energy dissipation at the mobile devices and improvement in the QoS.At the same time,the proposed ACF system also reduces the monetary costs of the service providers.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
In cellular network, users with same demand and in proximity to each other form the mobile cloud, in which the short-range D2 D technology is employed by users to improve the data dissemination efficiency. In view of ...In cellular network, users with same demand and in proximity to each other form the mobile cloud, in which the short-range D2 D technology is employed by users to improve the data dissemination efficiency. In view of the fact that the D2 D links with the poor channel conditions are likely to be the bottleneck of resource utilization improvement, aiming at the differentiation of link quality, this paper proposes a intra-cloud D2 D multicast retransmission algorithm based on SINR constraint to meet the minimum requirement of D2 D retransmission for Qo S. In the proposed algorithm, the model of system link cost is built, the number of multicast retransmission times is restricted and each link quality matrix is traversed to reasonably select the multicast transmitter as well as its routing, which further reduces the link cost consumption, and in turn improves the bandwidth efficiency. Simulation results show that the proposed algorithm is more efficient to improve the bandwidth utilization when the ratio between normal user and non-normal user is small in mobile cloud.展开更多
In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa...In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.展开更多
Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile d...Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile devices. However, less attention has been paid to the efficiency of revocation when there are mobile devices needed to be revoked. In this paper, we put forward a new solution, referred to as flexible access control with outsourceable revocation(FACOR) for mobile clouds. The FACOR applies the attribute-based encryption to enable flexible access control on outsourced data, and allows mobile users to outsource the time-consuming encryption and decryption computations to proxies, with only requiring attributes authorization to be fully trusted. As an advantageous feature, FACOR provides an outsourceable revocation for mobile users to reduce the complicated attribute-based revocation operations. The security analysis shows that our FACOR scheme achieves data security against collusion attacks and unauthorized accesses from revoked users. Both theoretical and experimental results confirm that our proposed scheme greatly reliefs the mobile devices from heavy encryption and decryption computations, as well as the complicated revocation of access rights in mobile clouds.展开更多
Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobi...Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobile devices. It provides mobile users with data storage and processing services on a cloud computing platform. Because mobile cloud computing is still in its infancy we aim to clarify confusion that has arisen from different views. Existing works are reviewed, and an overview of recent advances in mobile cloud computing is provided. We investigate representative infrastructures of mobile cloud computing and analyze key components. Moreover, emerging MCC models and services are discussed, and challenging issues are identified that will need to be addressed in future work.展开更多
In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such hetero...In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such heterogeneous mobile cloud(HMC) networks,both radio and cloud resources could become the system bottleneck,thus designing the schemes that separately and independently manage the resources may severely hinder the system performance.In this paper,we aim to design the network as the integration of the mobile access part and the cloud computing part,utilizing the inherent heterogeneity to meet the diverse quality of service(QoS)requirements of tenants.Furthermore,we propose a novel cross-network radio and cloud resource management scheme for HMC networks,which is QoS-aware,with the objective of maximizing the tenant revenue while satisfying the QoS requirements.The proposed scheme is formulated as a restless bandits problem,whose "indexability" feature guarantees the low complexity with scalable and distributed characteristics.Extensive simulation results are presented to demonstrate the significant performance improvement of the proposed scheme compared to the existing ones.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing...The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing video from cloud server to users in partially connected cooperative D2 D network using network coding. In such a scenario, the transmission conflicts occur from simultaneous transmissions of multiple devices, and the scheduling decision should be made not only on the encoded packets but also on the set of transmitting devices. We analyze the lower bound and give an integer linear formulation of the joint optimization problem over the set of transmitting devices and the packet combinations.We also propose a heuristic solution for this setup using a conflict graph and local graph at every device. Simulation results show that our coding scheme significantly reduces the number of transmission slots, which will increase the efficiency of video delivery.展开更多
Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices w...Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices with wireless interfaces to enable video uploading to the cloud for video playback in a later time point. In this paper, we propose a QoE-aware mobile cloud video recording scheme in the roadside vehicular networks, which can adaptively select the proper wireless interface and video bitrate for video uploading to the cloud. To maximize the total utility, we need to design a control strategy to carefully balance the transmission cost and the achieved QoE for users. To this purpose, we investigate the tradeoff between cost incurred by uploading through cellular networks and the achieved QoE of users. We apply the optimization framework to solve the formulated problem and design an online scheduling algorithm. We also conduct extensive trace-driven simulations and our results show that our algorithm achieves a good balance between the transmission cost and user QoE.展开更多
The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the cod...The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the coding-based scheme (COS) and the encryption-based scheme (EnS) have vulnerabilities on integrity. The corresponding attacks on these vulnerabilities are given. Then, the improved protocols such as the secure sharing-based protocol (SShP), the secure coding-based protocol (SCoP) and the secure encryption- based protocol (SEnP), are proposed to overcome these vulnerabilities. The core elements are protected through public key encryptions and digital signatures. Security analyses show that the confidentiality and the integrity of the improved protocols are guaranteed. Meanwhile, the improved protocols can keep the frame of the former schemes and have higher security. The simulation results illustrate that compared with the existing protocols, the communication overhead of the improved protocols is not significantly increased.展开更多
Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the e...Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works.展开更多
In today’s world,smart phones offer various applications namely face detection,augmented-reality,image and video processing,video gaming and speech recognition.With the increasing demand for computing resources,these...In today’s world,smart phones offer various applications namely face detection,augmented-reality,image and video processing,video gaming and speech recognition.With the increasing demand for computing resources,these applications become more complicated.Cloud Computing(CC)environment provides access to unlimited resource pool with several features,including on demand self-service,elasticity,wide network access,resource pooling,low cost,and ease of use.Mobile Cloud Computing(MCC)aimed at overcoming drawbacks of smart phone devices.The task remains in combining CC technology to the mobile devices with improved battery life and therefore resulting in significant performance.For remote execution,recent studies suggested downloading all or part of mobile application from mobile device.On the other hand,in offloading process,mobile device energy consumption,Central Processing Unit(CPU)utilization,execution time,remaining battery life and amount of data transmission in network were related to one or more constraints by frameworks designed.To address the issues,a Heuristic and Bent Key Exchange(H-BKE)method can be considered by both ways to optimize energy consumption as well as to improve security during offloading.First,an energy efficient offloading model is designed using Reactive Heuristic Offloading algorithm where,the secondary users are allocated with the unused primary users’spectrum.Next,a novel AES algorithm is designed that uses a Bent function and Rijndael variant with the advantage of large block size is hard to interpret and hence is said to ensure security while accessing primary users’unused spectrum by the secondary user.Simulations are conducted for efficient offloading in mobile cloud and performance valuations are carried on the way to demonstrate that our projected technique is successful in terms of time consumption,energy consumption along with the security aspects covered during offloading in MCC.展开更多
With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-se...With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services.However,most of the protocols did not consider the case of hierarchical authentication.In the existing protocol,when a mobile user once registered at the registration center,he/she can successfully authenticate with all mobile service providers that are registered at the registration center,but real application scenarios are not like this.For some specific scenarios,some mobile service providers want to provide service only for particular users.For this reason,we propose a new hierarchical multi-server authentication protocol for mobile cloud computing.The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers.The proposed protocol reduces computing and communication costs by up to 42.6%and 54.2%compared to two superior protocols.The proposed protocol can also resist the attacks known so far.展开更多
Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study...Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources.展开更多
Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scala...Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scalability enables access to unlimited resources for mobile devices, so more studies have focused on cloud computingbased mobile services. Due to the stability of wireless networks, changes of Quality of Service (QoS) level and user' real-time preferences, it is becoming challenging to determine how to adaptively choose the "appropriate" service in mobile cloud computing environments. In this paper, we present an adaptive service selection method. This method first extracts user preferences from a service's evaluation and calculates the similarity of the service with the weighted Euclidean distance. Then, they are combined with user context data and the most suitable service is recommended to the user. In addition, we apply the fuzzy cognitive imps-based model to the adaptive policy, which improves the efficiency and performance of the algorithm. Finally, the experiment and simulation demonstrate that our approach is effective.展开更多
In this paper, we define mobile cloud computing and describe how it can be used for delivering advanced any-media services to both nomadic and mobile users. We focus on service delivery that is localized and personali...In this paper, we define mobile cloud computing and describe how it can be used for delivering advanced any-media services to both nomadic and mobile users. We focus on service delivery that is localized and personalized and suggest that virtualization and tighter cross-layer communication allows for convergence and seamless transition of services. These are also creating new and never-before seen ways of developing and delivering personalized any-media services. We discuss current paradigms for implementing cloud-based any-media services that generate revenue. Future research topics and requirements for evolving network and service elements are also discussed.展开更多
In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promisi...In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promising business concept to a working reality in both the private and public IT sectors. The U.S. government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.展开更多
基金supported by the Bio and Medical Technology Development Program of the National Research Foundation(NRF)funded by the Korean government(MSIT)(No.NRF-2019M3E5D1A02069073)supported by the Soonchunhyang University Research Fund.
文摘Healthcare is a fundamental part of every individual’s life.The healthcare industry is developing very rapidly with the help of advanced technologies.Many researchers are trying to build cloud-based healthcare applications that can be accessed by healthcare professionals from their premises,as well as by patients from their mobile devices through communication interfaces.These systems promote reliable and remote interactions between patients and healthcare professionals.However,there are several limitations to these innovative cloud computing-based systems,namely network availability,latency,battery life and resource availability.We propose a hybrid mobile cloud computing(HMCC)architecture to address these challenges.Furthermore,we also evaluate the performance of heuristic and dynamic machine learning based task scheduling and load balancing algorithms on our proposed architecture.We compare them,to identify the strengths and weaknesses of each algorithm;and provide their comparative results,to show latency and energy consumption performance.Challenging issues for cloudbased healthcare systems are discussed in detail.
基金funded by University Grant Commission with UGC-Ref.No.:3364/(NET-JUNE 2015).
文摘This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.
基金This research work is funded by TEQIP-III under Assistantship Head:1.3.2.2 in PFMS dated 29.06.2021.
文摘On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains.Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’cognitive capacity.However,the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines(VMs).Furthermore,any delays at the cloud end would further aggravate the miseries of real-time tasks.To resolve these issues,this paper proposes an auto-scaling framework(ACF)that strives to maintain the quality of service(QoS)for the end users as per the service level agreement(SLA)negotiated assurance level for service availability.In addition,it also provides an innovative solution for dealing with the VM startup overheads without truncating the running tasks.Unlike the waiting cost and service cost tradeoff-based systems or threshold-rule-based systems,it does not require strict tuning in the waiting costs or in the threshold rules for enhancing the QoS.We explored the design space of the ACF system with the CloudSim simulator.The extensive sets of experiments demonstrate the effectiveness of the ACF system in terms of good reduction in energy dissipation at the mobile devices and improvement in the QoS.At the same time,the proposed ACF system also reduces the monetary costs of the service providers.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)under Grant No.2014AA01A705the National Natural Science Foundation of China under Grant No.61440062the Chongqing Municipal Natural Science Foundation under Grant No.CSTC2013jj B40001
文摘In cellular network, users with same demand and in proximity to each other form the mobile cloud, in which the short-range D2 D technology is employed by users to improve the data dissemination efficiency. In view of the fact that the D2 D links with the poor channel conditions are likely to be the bottleneck of resource utilization improvement, aiming at the differentiation of link quality, this paper proposes a intra-cloud D2 D multicast retransmission algorithm based on SINR constraint to meet the minimum requirement of D2 D retransmission for Qo S. In the proposed algorithm, the model of system link cost is built, the number of multicast retransmission times is restricted and each link quality matrix is traversed to reasonably select the multicast transmitter as well as its routing, which further reduces the link cost consumption, and in turn improves the bandwidth efficiency. Simulation results show that the proposed algorithm is more efficient to improve the bandwidth utilization when the ratio between normal user and non-normal user is small in mobile cloud.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.
基金supported in part by National High-Tech Research and Development Program of China(“863” Program)under Grant No.2015AA016004National Natural Science Foundation of China under Grants No.61173154,61272451,61572380
文摘Access control is a key mechanism to secure outsourced data in mobile clouds. Some existing solutions are proposed to enforce flexible access control on outsourced data or reduce the computations performed by mobile devices. However, less attention has been paid to the efficiency of revocation when there are mobile devices needed to be revoked. In this paper, we put forward a new solution, referred to as flexible access control with outsourceable revocation(FACOR) for mobile clouds. The FACOR applies the attribute-based encryption to enable flexible access control on outsourced data, and allows mobile users to outsource the time-consuming encryption and decryption computations to proxies, with only requiring attributes authorization to be fully trusted. As an advantageous feature, FACOR provides an outsourceable revocation for mobile users to reduce the complicated attribute-based revocation operations. The security analysis shows that our FACOR scheme achieves data security against collusion attacks and unauthorized accesses from revoked users. Both theoretical and experimental results confirm that our proposed scheme greatly reliefs the mobile devices from heavy encryption and decryption computations, as well as the complicated revocation of access rights in mobile clouds.
基金supported by Hong Kong RGC under the GRF grant PolyU5106/10ENokia Research Lab (Beijing) under the grant H-ZG19+1 种基金supported by the National S&T Major Project of China under No.2009ZX03006-001Guangdong S&T Major Project under No.2009A080207002
文摘Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobile devices. It provides mobile users with data storage and processing services on a cloud computing platform. Because mobile cloud computing is still in its infancy we aim to clarify confusion that has arisen from different views. Existing works are reviewed, and an overview of recent advances in mobile cloud computing is provided. We investigate representative infrastructures of mobile cloud computing and analyze key components. Moreover, emerging MCC models and services are discussed, and challenging issues are identified that will need to be addressed in future work.
基金supported in part by the National Natural Science Foundation of China under Grant 61101113,61372089 and 61201198 the Beijing Natural Science Foundation under Grant 4132007,4132015 and 4132019 the Research Fund for the Doctoral Program of Higher Education of China under Grant 20111103120017
文摘In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such heterogeneous mobile cloud(HMC) networks,both radio and cloud resources could become the system bottleneck,thus designing the schemes that separately and independently manage the resources may severely hinder the system performance.In this paper,we aim to design the network as the integration of the mobile access part and the cloud computing part,utilizing the inherent heterogeneity to meet the diverse quality of service(QoS)requirements of tenants.Furthermore,we propose a novel cross-network radio and cloud resource management scheme for HMC networks,which is QoS-aware,with the objective of maximizing the tenant revenue while satisfying the QoS requirements.The proposed scheme is formulated as a restless bandits problem,whose "indexability" feature guarantees the low complexity with scalable and distributed characteristics.Extensive simulation results are presented to demonstrate the significant performance improvement of the proposed scheme compared to the existing ones.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
基金supported by Fundamental Research Funds for the Central Universities(No.SWU115002,No.XDJK2015C104)
文摘The increasing popularity of smart mobile devices and the rise of online services has increased the requirements for efficient dissemination of social video contents. In this paper,we study the problem of distributing video from cloud server to users in partially connected cooperative D2 D network using network coding. In such a scenario, the transmission conflicts occur from simultaneous transmissions of multiple devices, and the scheduling decision should be made not only on the encoded packets but also on the set of transmitting devices. We analyze the lower bound and give an integer linear formulation of the joint optimization problem over the set of transmitting devices and the packet combinations.We also propose a heuristic solution for this setup using a conflict graph and local graph at every device. Simulation results show that our coding scheme significantly reduces the number of transmission slots, which will increase the efficiency of video delivery.
基金supported in part by the National Science Foundation of China under Grant 61272397,Grant 61572538,Grant 61174152,Grant 61331008in part by the Guangdong Natural Science Funds for Distinguished Young Scholar under Grant S20120011187
文摘Most of previous video recording devices in mobile vehicles commonly store captured video contents locally. With the rapid development of 4G/Wi Fi networks, there emerges a new trend to equip video recording devices with wireless interfaces to enable video uploading to the cloud for video playback in a later time point. In this paper, we propose a QoE-aware mobile cloud video recording scheme in the roadside vehicular networks, which can adaptively select the proper wireless interface and video bitrate for video uploading to the cloud. To maximize the total utility, we need to design a control strategy to carefully balance the transmission cost and the achieved QoE for users. To this purpose, we investigate the tradeoff between cost incurred by uploading through cellular networks and the achieved QoE of users. We apply the optimization framework to solve the formulated problem and design an online scheduling algorithm. We also conduct extensive trace-driven simulations and our results show that our algorithm achieves a good balance between the transmission cost and user QoE.
基金The National Natural Science Foundation of China( No. 60902008)the Key Laboratory Hi-Tech Program of Changzhou City( No. CM20103003)+1 种基金the Key Laboratory Program of Information Network Security of Ministry of Public Security (No. C12602)the Science and Technology Supporting Project of Changzhou City ( No. CE20120030)
文摘The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the coding-based scheme (COS) and the encryption-based scheme (EnS) have vulnerabilities on integrity. The corresponding attacks on these vulnerabilities are given. Then, the improved protocols such as the secure sharing-based protocol (SShP), the secure coding-based protocol (SCoP) and the secure encryption- based protocol (SEnP), are proposed to overcome these vulnerabilities. The core elements are protected through public key encryptions and digital signatures. Security analyses show that the confidentiality and the integrity of the improved protocols are guaranteed. Meanwhile, the improved protocols can keep the frame of the former schemes and have higher security. The simulation results illustrate that compared with the existing protocols, the communication overhead of the improved protocols is not significantly increased.
基金supported in part by Hong Kong RGC under GRF Grant 510412the National High-Technology Research and Development Program (863 Program) of China under Grant 2013AA01A212.
文摘Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works.
文摘In today’s world,smart phones offer various applications namely face detection,augmented-reality,image and video processing,video gaming and speech recognition.With the increasing demand for computing resources,these applications become more complicated.Cloud Computing(CC)environment provides access to unlimited resource pool with several features,including on demand self-service,elasticity,wide network access,resource pooling,low cost,and ease of use.Mobile Cloud Computing(MCC)aimed at overcoming drawbacks of smart phone devices.The task remains in combining CC technology to the mobile devices with improved battery life and therefore resulting in significant performance.For remote execution,recent studies suggested downloading all or part of mobile application from mobile device.On the other hand,in offloading process,mobile device energy consumption,Central Processing Unit(CPU)utilization,execution time,remaining battery life and amount of data transmission in network were related to one or more constraints by frameworks designed.To address the issues,a Heuristic and Bent Key Exchange(H-BKE)method can be considered by both ways to optimize energy consumption as well as to improve security during offloading.First,an energy efficient offloading model is designed using Reactive Heuristic Offloading algorithm where,the secondary users are allocated with the unused primary users’spectrum.Next,a novel AES algorithm is designed that uses a Bent function and Rijndael variant with the advantage of large block size is hard to interpret and hence is said to ensure security while accessing primary users’unused spectrum by the secondary user.Simulations are conducted for efficient offloading in mobile cloud and performance valuations are carried on the way to demonstrate that our projected technique is successful in terms of time consumption,energy consumption along with the security aspects covered during offloading in MCC.
基金This work is funded by the Chengdu Science and Technology Bureau No.2016-XT00-00015-GXthe Civil Aviation Administration of China No.PSDSA201802.
文摘With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services.However,most of the protocols did not consider the case of hierarchical authentication.In the existing protocol,when a mobile user once registered at the registration center,he/she can successfully authenticate with all mobile service providers that are registered at the registration center,but real application scenarios are not like this.For some specific scenarios,some mobile service providers want to provide service only for particular users.For this reason,we propose a new hierarchical multi-server authentication protocol for mobile cloud computing.The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers.The proposed protocol reduces computing and communication costs by up to 42.6%and 54.2%compared to two superior protocols.The proposed protocol can also resist the attacks known so far.
基金This work was supported by Shandong medical and health science and technology development plan project(No.202012070393).
文摘Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources.
基金the third level of 2011 Zhejiang Province 151 Talent Project and National Natural Science Foundation of China under Grant No.61100043
文摘Despite the rapid advances in mobile technology, many constraints still prevent mobile devices from running resource-demanding applications in mobile environments. Cloud computing with flexibility, stability and scalability enables access to unlimited resources for mobile devices, so more studies have focused on cloud computingbased mobile services. Due to the stability of wireless networks, changes of Quality of Service (QoS) level and user' real-time preferences, it is becoming challenging to determine how to adaptively choose the "appropriate" service in mobile cloud computing environments. In this paper, we present an adaptive service selection method. This method first extracts user preferences from a service's evaluation and calculates the similarity of the service with the weighted Euclidean distance. Then, they are combined with user context data and the most suitable service is recommended to the user. In addition, we apply the fuzzy cognitive imps-based model to the adaptive policy, which improves the efficiency and performance of the algorithm. Finally, the experiment and simulation demonstrate that our approach is effective.
文摘In this paper, we define mobile cloud computing and describe how it can be used for delivering advanced any-media services to both nomadic and mobile users. We focus on service delivery that is localized and personalized and suggest that virtualization and tighter cross-layer communication allows for convergence and seamless transition of services. These are also creating new and never-before seen ways of developing and delivering personalized any-media services. We discuss current paradigms for implementing cloud-based any-media services that generate revenue. Future research topics and requirements for evolving network and service elements are also discussed.
文摘In 2010, cloud computing gained momentum. Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources. It has matured from a promising business concept to a working reality in both the private and public IT sectors. The U.S. government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.