To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ...To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.展开更多
Mobile robot path planning is an important research branch in the field of mobile robots.The main disadvantage of the traditional artificial potential field(APF)method is prone to local minima problems.Improved artifi...Mobile robot path planning is an important research branch in the field of mobile robots.The main disadvantage of the traditional artificial potential field(APF)method is prone to local minima problems.Improved artificial potential field(IAPF)method is presented in this paper to solve the problem in the traditional APF method for robot path planning in different conditions.We introduce the distance between the robot and the target point to the function of the original repulsive force field and change the original direction of the repulsive force to avoid the trap problem caused by the local minimum point.The IAPF method is suitable for mobile robot path planning in the complicated environment.Simulation and experiment results at the robot platform illustrated the superiority of the modified IAPF method.展开更多
For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence a...For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatl...The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatly. Robot localization and decisionmaking are the most important cognitive processes during navigation. However, most of these algorithms are not efficient and are challenging tasks while robots navigate through complex environments. In this paper,we propose a biologically inspired method for robot decision-making, based on rat’s brain signals. Rodents accurately and rapidly navigate in complex spaces by localizing themselves in reference to the surrounding environmental landmarks. Firstly, we analyzed the rats’ strategies while navigating in the complex Y-maze, and recorded local field potentials(LFPs), simultaneously.The recorded LFPs were processed and different features were extracted which were used as the input in the artificial neural network(ANN) to predict the rat’s decision-making in each junction. The ANN performance was tested in a real robot and good performance is achieved. The implementation of our method on a real robot, demonstrates its abilities to imitate the rat’s decision-making and integrate the internal states with external sensors, in order to perform reliable navigation in complex maze.展开更多
A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential fi...A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.展开更多
针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP...针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.展开更多
基金Supported by the National High Technology Research and Development Programme of China( No. 2006AA04Z245 ) and China Postdoctoral Science Foundation ( No. 200904500988 ).
文摘To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.
基金the National Nature Science Foundation of China(Nos.51579024,61374114)the Fundamental Research Funds for the Central Universities(DMU No.3132016311).
文摘Mobile robot path planning is an important research branch in the field of mobile robots.The main disadvantage of the traditional artificial potential field(APF)method is prone to local minima problems.Improved artificial potential field(IAPF)method is presented in this paper to solve the problem in the traditional APF method for robot path planning in different conditions.We introduce the distance between the robot and the target point to the function of the original repulsive force field and change the original direction of the repulsive force to avoid the trap problem caused by the local minimum point.The IAPF method is suitable for mobile robot path planning in the complicated environment.Simulation and experiment results at the robot platform illustrated the superiority of the modified IAPF method.
基金National Natural Science Foundation of China(No.61373110)the Science-Technology Project of Wuhan,China(No.2014010101010005)
文摘For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
基金supported by the Japanese Government,Grants-in-Aid for Scientific Research 2014 to 2016 under Grant No.26330296
文摘The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatly. Robot localization and decisionmaking are the most important cognitive processes during navigation. However, most of these algorithms are not efficient and are challenging tasks while robots navigate through complex environments. In this paper,we propose a biologically inspired method for robot decision-making, based on rat’s brain signals. Rodents accurately and rapidly navigate in complex spaces by localizing themselves in reference to the surrounding environmental landmarks. Firstly, we analyzed the rats’ strategies while navigating in the complex Y-maze, and recorded local field potentials(LFPs), simultaneously.The recorded LFPs were processed and different features were extracted which were used as the input in the artificial neural network(ANN) to predict the rat’s decision-making in each junction. The ANN performance was tested in a real robot and good performance is achieved. The implementation of our method on a real robot, demonstrates its abilities to imitate the rat’s decision-making and integrate the internal states with external sensors, in order to perform reliable navigation in complex maze.
基金Projects(30270496,60075019,60575012)supported by the National Natural Science Foundation of China
文摘A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
文摘针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.