期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于MobileViT轻量化网络的车载CAN入侵检测方法
1
作者 陈虹 张立昂 +2 位作者 金海波 武聪 齐兵 《信息安全研究》 CSCD 北大核心 2024年第5期411-420,共10页
车载控制区域网络(controller area network,CAN)总线因缺少安全措施而易被攻击,因此入侵检测系统(intrusion detection system,IDS)在保护车载CAN总线免受网络攻击中发挥着重要作用.现有基于深度学习的车载CAN总线入侵检测方法存在资... 车载控制区域网络(controller area network,CAN)总线因缺少安全措施而易被攻击,因此入侵检测系统(intrusion detection system,IDS)在保护车载CAN总线免受网络攻击中发挥着重要作用.现有基于深度学习的车载CAN总线入侵检测方法存在资源开销大和延迟较高的问题.为减少检测延迟,提高检测率,提出一种利用改进的轻量化MobileViT模型对车载CAN总线进行入侵检测的方法.首先,将攻击流量可视化为彩色图,再使用GELU替换MobileViT的MV2模块中常规ReLU6,从而作为该模块的激活函数,可有效解决神经元死亡问题,提升模型收敛速度.使用指数衰减自动更新学习率,并通过迁移学习加速训练过程实现对彩色图分类,从而达到对入侵行为的检测.基于CAR-HACKING DATASET数据集的实验表明,改进后的MobileViT在消耗较少算力的情况下对入侵行为的检测准确率为100%,模型参数仅为2.12 MB,平均响应时间仅为1.6 ms,节省了训练资源,并保证了检测的准确率. 展开更多
关键词 入侵检测 车载网络安全 轻量化 mobilevit CAN总线
下载PDF
基于网络融合的改进MobileViT人脸表情识别
2
作者 邓翔宇 裴浩媛 盛迎 《计算机工程与科学》 CSCD 北大核心 2024年第6期1072-1080,共9页
从轻量化模型的角度提出一种基于网络融合的改进MobileViT人脸表情识别网络。该网络将多尺度卷积PSConv和注意力机制通过残差结构进行融合,形成RAPSConv特征重构模块,该模块能从细粒度角度更高效地提取多尺度特征,加强关键特征表达,进... 从轻量化模型的角度提出一种基于网络融合的改进MobileViT人脸表情识别网络。该网络将多尺度卷积PSConv和注意力机制通过残差结构进行融合,形成RAPSConv特征重构模块,该模块能从细粒度角度更高效地提取多尺度特征,加强关键特征表达,进而提高网络的表达能力,构建出一个端到端的表情识别网络。同时,为了进一步缩小同类表情间差距,提出联合使用Softmax Loss和Center Loss损失函数,有效减少了表情识别的误判率。实验结果表明,改进后的网络在3个自然场景表情数据集FER2013、FER+和RAF-DB上的准确率均优于基础网络MobileViT,准确率分别提高了1.73%,2.18%和1.64%,改进后的网络参数量较少,鲁棒性较强,便于实现轻量化和集成,适合人脸表情识别在现实场景中的应用。 展开更多
关键词 人脸表情识别 mobilevit 多尺度卷积PSConv 注意力机制 网络融合 轻量化网络
下载PDF
基于改进MobileViT网络的番茄叶片病害识别 被引量:3
3
作者 陈晓 夏颖 《电子测量技术》 北大核心 2023年第14期188-196,共9页
针对卷积神经网络对番茄叶片型病害分类效果不佳的问题,提出了一种基于改进MobileViT轻量级网络的番茄病害识别方法。首先,删除输入和全局表征层的特征融合,将局部和全局表征层进行特征融合,使局部表征与全局表征更加密切相关;其次,为... 针对卷积神经网络对番茄叶片型病害分类效果不佳的问题,提出了一种基于改进MobileViT轻量级网络的番茄病害识别方法。首先,删除输入和全局表征层的特征融合,将局部和全局表征层进行特征融合,使局部表征与全局表征更加密切相关;其次,为了避免模型在缩放时参数和FLOPS的大幅增加,在融合块中使用1×1卷积层替换3×3卷积层;然后,还添加了输入与融合块的残差结构,优化了网络模型中的更深层次;最后,将ReLU6激活函数替换成H-Swish激活函数,进一步提高了模型准确率。实验结果表明,改进后的MobileViT模型可以很好地实现番茄病害的识别,平均识别准确率达到99.16%。相较于其它的卷积神经网络模型,具有更高的识别精度。 展开更多
关键词 番茄 病害识别 mobilevit 卷积神经网络 TRANSFORMER H-Swish激活函数
下载PDF
改进MobileViT与YOLOv4的轻量化车辆检测网络 被引量:13
4
作者 郑玉珩 黄德启 《电子测量技术》 北大核心 2023年第2期175-183,共9页
基于深度学习的目标检测算法在智能交通的应用中,对于车辆检测存在模型参数量大、计算速度慢和简单网络精准度较低的问题。本文提出了一种高效的轻量化车辆检测模型,该检测模型采用YOLOv4网络作为参考模型进行改进。首先,本文采用CSPMob... 基于深度学习的目标检测算法在智能交通的应用中,对于车辆检测存在模型参数量大、计算速度慢和简单网络精准度较低的问题。本文提出了一种高效的轻量化车辆检测模型,该检测模型采用YOLOv4网络作为参考模型进行改进。首先,本文采用CSPMobileViT网络来替换原始主干网络,然后将PANet替换成BiFPN,并且将BiFPN中的3×3标准卷积替换成深度可分离卷积,最后,在BiFPN之前和YOLO-Head之前添加ECA模块。在损失函数部分,将边框回归损失CIoU改进为Focal EIoU来解决难易样本不平衡的问题。实验结果表明改进网络的mAP值为96.77%,检测速度达到每张图片0.0234 s,模型大小只有32.76 MB,参数量为8587541,与原始算法相比mAP提升了1.54%,而模型大小和参数量仅约为原始模型1/8,并且FPS提升了7.5,改进算法具有更好检测效果。 展开更多
关键词 YOLOv4 mobilevit 车辆检测 轻量化网络
下载PDF
基于轻量级Transformer的城市路网提取方法 被引量:2
5
作者 冯志成 杨杰 陈智超 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第1期40-49,108,共11页
针对现有方法存在道路区域提取不精准和实时性不足的限制,提出基于轻量级Transformer的路网提取方法RoadViT.利用卷积神经网络与Transformer混合的MobileViT架构进行编码特征,有效地提取高级上下文信息.提出金字塔解码器实现多尺度特征... 针对现有方法存在道路区域提取不精准和实时性不足的限制,提出基于轻量级Transformer的路网提取方法RoadViT.利用卷积神经网络与Transformer混合的MobileViT架构进行编码特征,有效地提取高级上下文信息.提出金字塔解码器实现多尺度特征的提取和融合,生成像素类别的概率分布.结合Mosaic与多尺度缩放和随机裁剪策略实现数据增强,构建精细多样的遥感图像.针对城市遥感图像中道路类别和背景类别的不平衡问题,提出动态加权损失函数.实验结果表明,RoadViT的参数量仅为1.25×10^(6),在Jetson TX2上的推理速度可达10帧/s,在CHN6-CUG数据集上的精度可达57.0%.所提方法是轻量级Transformer在城市遥感图像中的有效探索,在保证推理实时性的同时,实现道路提取精度的提升. 展开更多
关键词 城市路网提取 TRANSFORMER mobilevit 遥感图像语义分割 轻量级模型
下载PDF
基于MobileViT-CA模型的营运车辆驾驶人分心行为检测
6
作者 贺宜 鲁曼可 +2 位作者 高嵩 曹博 李继朴 《中国公路学报》 EI CAS CSCD 北大核心 2024年第1期194-204,共11页
营运车辆驾驶人因其职业特殊性,驾驶过程中易产生分心驾驶行为从而引发重大交通事故。为提高营运车辆驾驶人分心驾驶行为的检测准确性和泛化性,提出一种基于改进MobileViT网络的驾驶人分心行为检测方法。首先,基于自然驾驶实车试验,构... 营运车辆驾驶人因其职业特殊性,驾驶过程中易产生分心驾驶行为从而引发重大交通事故。为提高营运车辆驾驶人分心驾驶行为的检测准确性和泛化性,提出一种基于改进MobileViT网络的驾驶人分心行为检测方法。首先,基于自然驾驶实车试验,构建包含安全驾驶、使用手机、喝水、整理仪容和与副驾驶交谈5类行为的营运车辆驾驶人分心行为数据集。其次,将注意力机制引入轻量型MobileViT网络,通过选择有效的网络主干MobileViT、注意力模块CA、网络嵌入位置从而设计出最优分类模型MobileViT-CA。研究结果表明:所提出的MobileViT-CA分类模型可以有效提升分类网络的性能,在正常光照条件下的营运车辆驾驶人分心行为数据集和State Farm数据集上分别达到了96.57%和99.89%的准确率,且模型具有体积小、检测精度高的优势,有较高的可靠性和泛化能力。 展开更多
关键词 交通工程 营运车辆 分心驾驶行为检测 mobilevit网络 注意力机制
原文传递
基于深度学习的芒果病虫害分类识别
7
作者 曹欢 方睿 《计算机技术与发展》 2023年第10期115-119,共5页
传统芒果病虫害防治,需要人工进行识别,现引入深度学习技术,可快速准确地对芒果病虫害进行识别。以攀西地区芒果的12种病虫害为研究对象,采用的数据集一部分来自公开数据集MangoLeafBD,另一部分由爬虫技术获得的网络图片组成,共获取图片... 传统芒果病虫害防治,需要人工进行识别,现引入深度学习技术,可快速准确地对芒果病虫害进行识别。以攀西地区芒果的12种病虫害为研究对象,采用的数据集一部分来自公开数据集MangoLeafBD,另一部分由爬虫技术获得的网络图片组成,共获取图片6769张,其中4879张为训练集,1220张为验证集,670张为测试集。为迎合实际应用的需要,选择了MobileNetV3、MobileViT等4种不同规模的轻量级深度学习网络模型,结合迁移学习训练策略进行对比实验,比较了各个模型的参数量、精确率、召回率等参数。实验结果显示,MobileViT模型用于芒果病虫害分类识别效果最佳,该模型的精确率为96.31%,召回率为96.12%,F1为96.20%,均优于其他模型。由此表明,模型具有较好的鲁棒性和识别性能,可为芒果病虫害分类识别提供技术参考。 展开更多
关键词 芒果病虫害识别 轻量级卷积神经网络 mobilevit 迁移学习 MangoLeafBD
下载PDF
基于改进MobileViT的葡萄叶部病害识别模型
8
作者 胡施威 邱林 邓建新 《山东农业科学》 2024年第10期159-166,共8页
本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添... 本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT。首先,将MobileViT作为基础网络,在Layer1、Layer2后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添加Dropout层,防止数据出现过拟合现象;最后,选用结合权重衰减的优化器AdamW(Adam with Weight Decay Regularization),更好地控制模型复杂度并提高泛化能力。实验结果显示,相较于MobileViT基础网络,改进后的CD-MobileViT网络在精确率、召回率、F1得分和准确率方面分别提高了1.77、1.85、1.65、1.75个百分点,与其他几种经典网络模型(InceptionV1、MobileNetV2、EfficientNetB0、VGG-16)相比也有不同程度的提升(0.25~1.47个百分点),说明本研究提出的模型在葡萄叶部病害识别上有良好的效果,未来可部署到移动端使用,为葡萄叶部病害的准确识别提供新的解决方案。 展开更多
关键词 葡萄叶部病害识别 mobilevit网络 坐标注意力 AdamW优化器 Dropout层
下载PDF
基于双分支轻量化网络的微表情识别算法
9
作者 张波 武瑀繁 《激光与光电子学进展》 CSCD 北大核心 2024年第14期324-333,共10页
针对采用卷积神经网络识别微表情时提高精度后往往会伴随复杂性增加的问题,提出一种改进的双流轻量级注意力网络(EDSMISEViTNet)用于微表情识别。首先对微表情样本进行预处理,提取峰值帧作为空间特征,采用TV-L1光流法提取起始帧和峰值... 针对采用卷积神经网络识别微表情时提高精度后往往会伴随复杂性增加的问题,提出一种改进的双流轻量级注意力网络(EDSMISEViTNet)用于微表情识别。首先对微表情样本进行预处理,提取峰值帧作为空间特征,采用TV-L1光流法提取起始帧和峰值帧之间的时间特征;然后基于MobileViT网络改进并设计了Inception和SE模块相结合的MI模块,并加入注意力模块以高效提取有效特征;将时间特征和空间特征分别输入该网络,对结果特征进行拼接融合继而分类。为使结果更加准确,将CASME Ⅱ、SAMM以及SMIC数据集组合为复合数据集进行实验。实验结果表明,所提模型的训练参数量仅为3.9×10~6,处理单个样本的时间为71.8 ms。与现有方法相比,所提方法在保证低参数量的同时,准确率也具有良好表现。 展开更多
关键词 微表情识别 双流卷积神经网络 TV-L1光流法 视觉Transformer 注意力机制 mobilevit网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部