期刊文献+
共找到1,353,157篇文章
< 1 2 250 >
每页显示 20 50 100
改进MobileViT网络识别轻量化田间杂草 被引量:7
1
作者 杨森森 张昊 +1 位作者 兴陆 杜勇 《农业工程学报》 EI CAS CSCD 北大核心 2023年第9期152-160,共9页
为解决现有的田间杂草识别方法无法兼顾高准确率与实时性的问题,该研究提出了一种基于改进MobileViT网络的轻量化杂草识别方法。首先,该方法使用高效的MobileViT网络构建杂草特征提取网络,在保证特征提取能力的同时实现更少的模型参数... 为解决现有的田间杂草识别方法无法兼顾高准确率与实时性的问题,该研究提出了一种基于改进MobileViT网络的轻量化杂草识别方法。首先,该方法使用高效的MobileViT网络构建杂草特征提取网络,在保证特征提取能力的同时实现更少的模型参数量与计算量;其次,通过高效通道注意力机制加强下采样后特征图中的重要特征,进一步提升模型的特征提取能力;最后,特征提取网络中的MobileViT模块被用于同时学习局部语义信息和全局语义信息,仅通过少量模块的组合便能够准确地捕捉到不同类别杂草与作物间细微差异。为验证该方法的有效性,该研究以农田环境下采集的玉米幼苗及其4类伴生杂草图像为数据进行了模型训练,试验结果表明,该方法的识别准确率、精准度、召回率和F1分数分别为99.61%、99.60%、99.58%和99.59%,优于VGG-16、ResNet-50、DenseNet-161、MobileNetv2等常用卷积神经网络;同时,可视化结果表明该方法能够有效提取杂草图像中的关键特征,并抑制背景区域对识别结果的影响。该研究提出的方法能够精准、快速地区分出农田环境下形态相似的多种杂草与作物,可为智能除草设备中的杂草识别系统设计提供参考。 展开更多
关键词 图像识别 杂草 mobilevit 通道注意力 全局语义信息
下载PDF
基于改进MobileViT网络的番茄叶片病害识别 被引量:3
2
作者 陈晓 夏颖 《电子测量技术》 北大核心 2023年第14期188-196,共9页
针对卷积神经网络对番茄叶片型病害分类效果不佳的问题,提出了一种基于改进MobileViT轻量级网络的番茄病害识别方法。首先,删除输入和全局表征层的特征融合,将局部和全局表征层进行特征融合,使局部表征与全局表征更加密切相关;其次,为... 针对卷积神经网络对番茄叶片型病害分类效果不佳的问题,提出了一种基于改进MobileViT轻量级网络的番茄病害识别方法。首先,删除输入和全局表征层的特征融合,将局部和全局表征层进行特征融合,使局部表征与全局表征更加密切相关;其次,为了避免模型在缩放时参数和FLOPS的大幅增加,在融合块中使用1×1卷积层替换3×3卷积层;然后,还添加了输入与融合块的残差结构,优化了网络模型中的更深层次;最后,将ReLU6激活函数替换成H-Swish激活函数,进一步提高了模型准确率。实验结果表明,改进后的MobileViT模型可以很好地实现番茄病害的识别,平均识别准确率达到99.16%。相较于其它的卷积神经网络模型,具有更高的识别精度。 展开更多
关键词 番茄 病害识别 mobilevit 卷积神经网络 TRANSFORMER H-Swish激活函数
下载PDF
基于MobileViT轻量化网络的车载CAN入侵检测方法
3
作者 陈虹 张立昂 +2 位作者 金海波 武聪 齐兵 《信息安全研究》 CSCD 北大核心 2024年第5期411-420,共10页
车载控制区域网络(controller area network,CAN)总线因缺少安全措施而易被攻击,因此入侵检测系统(intrusion detection system,IDS)在保护车载CAN总线免受网络攻击中发挥着重要作用.现有基于深度学习的车载CAN总线入侵检测方法存在资... 车载控制区域网络(controller area network,CAN)总线因缺少安全措施而易被攻击,因此入侵检测系统(intrusion detection system,IDS)在保护车载CAN总线免受网络攻击中发挥着重要作用.现有基于深度学习的车载CAN总线入侵检测方法存在资源开销大和延迟较高的问题.为减少检测延迟,提高检测率,提出一种利用改进的轻量化MobileViT模型对车载CAN总线进行入侵检测的方法.首先,将攻击流量可视化为彩色图,再使用GELU替换MobileViT的MV2模块中常规ReLU6,从而作为该模块的激活函数,可有效解决神经元死亡问题,提升模型收敛速度.使用指数衰减自动更新学习率,并通过迁移学习加速训练过程实现对彩色图分类,从而达到对入侵行为的检测.基于CAR-HACKING DATASET数据集的实验表明,改进后的MobileViT在消耗较少算力的情况下对入侵行为的检测准确率为100%,模型参数仅为2.12 MB,平均响应时间仅为1.6 ms,节省了训练资源,并保证了检测的准确率. 展开更多
关键词 入侵检测 车载网络安全 轻量化 mobilevit CAN总线
下载PDF
基于改进轻量化网络MobileViT的苹果树叶病害识别
4
作者 马维娣 吴钦木 《江苏农业科学》 北大核心 2024年第3期229-236,共8页
针对传统的苹果树叶病害识别模型准确率低,参数数量多和移动端部署困难的问题,提出了一种基于改进轻量化网络MobileViT的的苹果树叶病害识别方法。该网络模型以MobileViT作为主干网络,高效编码全局信息,同时引入MV2模块编码局部信息,将... 针对传统的苹果树叶病害识别模型准确率低,参数数量多和移动端部署困难的问题,提出了一种基于改进轻量化网络MobileViT的的苹果树叶病害识别方法。该网络模型以MobileViT作为主干网络,高效编码全局信息,同时引入MV2模块编码局部信息,将原MobileViT网络结构中的Swish激活函数替换为SMU激活函数提高网络性能,并在全连接层后添加Dropout层防止数据过拟合。针对常见的多病症叶片、锈病叶片等苹果树叶病害进行识别。试验结果表明,改进后的MobileViT相对于其他轻量级网络识别准确率高,相对于重量级网络更轻量、反应更迅速,测试集识别的准确率达到95.73%,参数数量所占显存空间仅为5.6 MB,单张苹果树叶病害图片的响应时间为4.32 ms。最终将模型部署在在移动设备,落地实现成为可能。 展开更多
关键词 苹果树 病害识别 SMU 轻量级 MV2 mobilevit
下载PDF
基于网络融合的改进MobileViT人脸表情识别
5
作者 邓翔宇 裴浩媛 盛迎 《计算机工程与科学》 CSCD 北大核心 2024年第6期1072-1080,共9页
从轻量化模型的角度提出一种基于网络融合的改进MobileViT人脸表情识别网络。该网络将多尺度卷积PSConv和注意力机制通过残差结构进行融合,形成RAPSConv特征重构模块,该模块能从细粒度角度更高效地提取多尺度特征,加强关键特征表达,进... 从轻量化模型的角度提出一种基于网络融合的改进MobileViT人脸表情识别网络。该网络将多尺度卷积PSConv和注意力机制通过残差结构进行融合,形成RAPSConv特征重构模块,该模块能从细粒度角度更高效地提取多尺度特征,加强关键特征表达,进而提高网络的表达能力,构建出一个端到端的表情识别网络。同时,为了进一步缩小同类表情间差距,提出联合使用Softmax Loss和Center Loss损失函数,有效减少了表情识别的误判率。实验结果表明,改进后的网络在3个自然场景表情数据集FER2013、FER+和RAF-DB上的准确率均优于基础网络MobileViT,准确率分别提高了1.73%,2.18%和1.64%,改进后的网络参数量较少,鲁棒性较强,便于实现轻量化和集成,适合人脸表情识别在现实场景中的应用。 展开更多
关键词 人脸表情识别 mobilevit 多尺度卷积PSConv 注意力机制 网络融合 轻量化网络
下载PDF
改进MobileViT轻量级网络的电网危害鸟种鸣声识别
6
作者 宋超 邵明玉 《安庆师范大学学报(自然科学版)》 2024年第2期97-106,共10页
准确识别输电线路上的危害鸟种对电网涉鸟故障的差异化防治具有重要意义。目前,基于深度学习的鸟鸣识别方法得到了广泛应用,但现有模型存在参数大、效率低等问题,为此,本文通过引入轻量高效的MobileViT网络在MV2模块中融入压缩和激励(Sq... 准确识别输电线路上的危害鸟种对电网涉鸟故障的差异化防治具有重要意义。目前,基于深度学习的鸟鸣识别方法得到了广泛应用,但现有模型存在参数大、效率低等问题,为此,本文通过引入轻量高效的MobileViT网络在MV2模块中融入压缩和激励(Squeeze Excitation,SE)机制,提出了具有更强识别能力的改进模型——MobileViT-SE模型。该研究以典型电网危害鸟种的音频作为实验样本,对MobileViT和MobileViT-SE模型的识别能力进行了评估。结果表明,相比其他典型的深度学习模型,MobileViT和MobileViT-SE模型在参数量更少的条件下识别平均准确率更高,分别达到95.5%和97.2%,且后者提高了1.7%。 展开更多
关键词 电网涉鸟故障 鸟鸣识别 mobilevit-SE模型 压缩和激励机制
下载PDF
基于改进轻量化网络MobileViT的苹果叶片病虫害识别方法
7
作者 梁倩倩 陈勇 崔艳荣 《江苏农业科学》 北大核心 2024年第14期222-229,共8页
针对苹果叶片病害识别准确率低以及现有模型难以适应真实复杂场景等问题,提出一种改进的轻量化网络——MobileViT_filter_FCN,以提高对苹果叶片病害的识别准确率,并使得模型可以适应户外的复杂光照及遮挡环境。首先收集5类常见苹果叶片... 针对苹果叶片病害识别准确率低以及现有模型难以适应真实复杂场景等问题,提出一种改进的轻量化网络——MobileViT_filter_FCN,以提高对苹果叶片病害的识别准确率,并使得模型可以适应户外的复杂光照及遮挡环境。首先收集5类常见苹果叶片病害(如落叶病、褐斑病等)的图像样本,并利用多种数据增强技术对样本数据进行预处理(如水平翻转、垂直翻转等),以增加样本数据的多样性并提高模型的泛化能力;接着利用傅里叶变换技术设计一个可学习的滤波器层Filter layer,替换原始MobileViT模型中的多头注意力结构,以降低图片中的噪声影响并提高模型性能;最后,在修改后的MobileViT模型基础上,利用深度卷积层和残差结构设计一种FCN结构,结合该结构增强模型对病害图像的特征学习能力,进一步提高模型性能。试验结果表明,改进后的MobileViT_filter模型对苹果叶片病害的平均识别准确率达到97.73%,较原模型提高0.95百分点;在该基础上加入FCN结构后,平均识别准确率达到98.03%,较原模型提高1.25百分点,同时参数量减少2.6 M。 展开更多
关键词 多头注意力机制 图像分类 轻量化网络 苹果叶片病害识别 Filter Layer
下载PDF
基于MobileViT的岩石薄片图像岩性识别方法研究 被引量:1
8
作者 王琼 杨杰 +3 位作者 霍凤财 董宏丽 任伟建 于涛 《地质通报》 CAS CSCD 北大核心 2024年第6期938-946,共9页
岩石薄片图像中包含了大量肉眼无法观察到的地质特征信息,对岩石薄片图像的岩性识别结果为后续的石油勘探和开发奠定了基础。针对岩性识别数据集不均衡、识别模型参数多等问题,提出一种改进的轻量化MobileViT模型,该模型针对涵盖了90%... 岩石薄片图像中包含了大量肉眼无法观察到的地质特征信息,对岩石薄片图像的岩性识别结果为后续的石油勘探和开发奠定了基础。针对岩性识别数据集不均衡、识别模型参数多等问题,提出一种改进的轻量化MobileViT模型,该模型针对涵盖了90%以上常见岩性的岩石薄片图像进行建模分析。首先,为使模型更好地学习到每类岩石薄片图像中所包含的独特特征,对数据集进行数字增加。其次,使用GELU替换MobileViT中MV2模块中常规ReLU6,从而作为该模块的激活函数,有效解决神经元死亡的问题,提升模型的收敛速度。最后,划分训练集和测试集,使用余弦退火算法自动更新学习率,以迁移学习加速训练过程,实现岩石薄片图像中针对岩性的自动识别。实验结果表明,改进后的MobileViT对岩性识别的准确率达82.9%,模型的参数仅为7.66M,通过实例验证该算法具有较好的鲁棒性。 展开更多
关键词 岩石薄片 岩性识别 mobilevit 余弦退火 轻量化
下载PDF
改进MobileViT与YOLOv4的轻量化车辆检测网络 被引量:13
9
作者 郑玉珩 黄德启 《电子测量技术》 北大核心 2023年第2期175-183,共9页
基于深度学习的目标检测算法在智能交通的应用中,对于车辆检测存在模型参数量大、计算速度慢和简单网络精准度较低的问题。本文提出了一种高效的轻量化车辆检测模型,该检测模型采用YOLOv4网络作为参考模型进行改进。首先,本文采用CSPMob... 基于深度学习的目标检测算法在智能交通的应用中,对于车辆检测存在模型参数量大、计算速度慢和简单网络精准度较低的问题。本文提出了一种高效的轻量化车辆检测模型,该检测模型采用YOLOv4网络作为参考模型进行改进。首先,本文采用CSPMobileViT网络来替换原始主干网络,然后将PANet替换成BiFPN,并且将BiFPN中的3×3标准卷积替换成深度可分离卷积,最后,在BiFPN之前和YOLO-Head之前添加ECA模块。在损失函数部分,将边框回归损失CIoU改进为Focal EIoU来解决难易样本不平衡的问题。实验结果表明改进网络的mAP值为96.77%,检测速度达到每张图片0.0234 s,模型大小只有32.76 MB,参数量为8587541,与原始算法相比mAP提升了1.54%,而模型大小和参数量仅约为原始模型1/8,并且FPS提升了7.5,改进算法具有更好检测效果。 展开更多
关键词 YOLOv4 mobilevit 车辆检测 轻量化网络
下载PDF
基于MobileViT-CBAM的枇杷表面缺陷检测方法
10
作者 赵茂程 邹涛 +2 位作者 齐亮 汪希伟 李大伟 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期420-427,共8页
为实现枇杷采后快速、准确筛选,本文以MobileViT为主干特征提取网络,通过分别在Layer1和Layer2层之后嵌入注意力模块CBAM(Convolutional block attention module),强化网络在通道和空间上对细节特征的提取能力,构建了一种轻量化网络模型... 为实现枇杷采后快速、准确筛选,本文以MobileViT为主干特征提取网络,通过分别在Layer1和Layer2层之后嵌入注意力模块CBAM(Convolutional block attention module),强化网络在通道和空间上对细节特征的提取能力,构建了一种轻量化网络模型MobileViT-CBAM。相较于MobileViT,在验证集和测试集上本文方法对疤痕、机械伤、腐烂等缺陷果的识别准确率分别提高1.17、1.23个百分点。试验结果表明,MobileViT-CBAM模型与VGG16、ResNet34、MobileNetV2相比较,准确率最高(97.86%),同时兼具内存占用量小(3.768 MB)、推理时间短(每幅图像需42 ms)的优势。该轻量化网络模型可部署于嵌入式系统。本研究为构建枇杷在线检测系统提供了缺陷识别理论基础,为枇杷等农产品外部品质检测提供了一个高效、准确的方法。 展开更多
关键词 枇杷 mobilevit-CBAM 缺陷检测 轻量化
下载PDF
基于MobileViT的轻量型入侵检测模型研究
11
作者 姚军 孙方超 《现代电子技术》 北大核心 2024年第19期33-39,共7页
为解决入侵检测中数据不平衡对神经网络模型训练的影响和模型参数量高的问题,提出一种基于改进MobileViT的入侵检测模型。首先,使用方差分析提取对检测结果影响较高的特征,将提取后的特征转化为图像型数据,将其输入至MobileViT网络;其次... 为解决入侵检测中数据不平衡对神经网络模型训练的影响和模型参数量高的问题,提出一种基于改进MobileViT的入侵检测模型。首先,使用方差分析提取对检测结果影响较高的特征,将提取后的特征转化为图像型数据,将其输入至MobileViT网络;其次,针对占比较少的攻击流量,采用焦点损失函数自适应地调整攻击流量的损失贡献,使模型更加专注于不平衡的攻击流量;最后,为解决神经元死亡问题,使用GeLU激活函数替换MobileViT网络中MV2的ReLU6激活函数,加快模型收敛速度。实验结果表明,改进的MobileViT模型参数量仅为5.67 MB,与Shufflenet、Mobilenet相比拥有最少的参数量,模型的准确率、召回率以及F_(1)分数分别达到了98.40%、96.49%、95.17%。 展开更多
关键词 入侵检测 焦点损失函数 数据不平衡 mobilevit GeLU 方差分析
下载PDF
广义确定性标识网络 被引量:1
12
作者 杨冬 程宗荣 +4 位作者 田伟康 王洪超 张宏科 谭斌 赵志勇 《电子学报》 EI CAS CSCD 北大核心 2024年第1期1-18,共18页
随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如... 随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如,在算网融合场景,智算任务要求同时保障传输与计算要素的确定性来实现高性能通信;在绿色通信场景,需要考虑节点能量要素的确定性以维持网络稳定运行.针对上述需求,本文基于前期提出的标识网络技术,研究面向传输、计算、存储、能量等多要素的广义确定性网络.首先提出广义确定性标识网络架构,包括差异化服务层、异构融合网络层和智慧化适配层.差异化服务层和异构融合网络层,分别实现差异化确定性应用需求和异构化确定性网络要素的统一标识和描述,并通过标识解析映射实现确定性信息向智慧化适配层的统一封装和传递;智慧化适配层完成差异化确定性应用需求和异构化确定性网络要素的适配.现有确定性资源适配方法,即使仅考虑单一网络内的基本确定性要素,仍面临计算时间长、求解复杂性高、灵活度低等问题,为了支持更加复杂的多确定性要素、多种异构网络的协同适配,设计了基于深度强化学习的端到端的确定性调度(End-to-end Deterministic resource scheduling,E2eDet)算法,该算法可统一化、端到端地为混合数据流协同分配多种确定性网络资源,满足不同应用的差异化确定性需求.实验表明,E2eDet比DeepCQF和Random算法分别提升了28.4%和6.38倍数据流调度数量,同时E2eDet可以较好地权衡计算时间和调度能力. 展开更多
关键词 广义确定性网络 完备标识空间 网络体系架构 深度强化学习 网络资源调度
下载PDF
基于图卷积神经网络的节点分类方法研究综述 被引量:3
13
作者 张丽英 孙海航 +1 位作者 孙玉发 石兵波 《计算机科学》 CSCD 北大核心 2024年第4期95-105,共11页
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经... 节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于图卷积神经网络的节点分类方法的研究进展进行综述,首先介绍图的相关概念、节点分类的任务定义和常用的图数据集;然后探讨两类经典图卷积神经网络——谱域和空间域图卷积神经网络,以及图卷积神经网络在节点分类领域面临的挑战;之后从模型和数据两个视角分析图卷积神经网络在节点分类任务中的研究成果和未解决的问题;最后对基于图卷积神经网络的节点分类研究方向进行展望,并总结全文。 展开更多
关键词 图数据 节点分类 图神经网络 图卷积神经网络
下载PDF
学习型社区赋能教育强国建设——基于在线学习者关系网络分析视角 被引量:2
14
作者 贺超波 林晓凡 +2 位作者 程俊伟 汤庸 张倚诺 《中国电化教育》 CSSCI 北大核心 2024年第6期38-45,共8页
学习型社区建设有助于加快教育强国落地,社区中在线学习者的各种协作互动行为,促进了学习者关系网络的生成。对该网络进行深入分析,可以挖掘其中蕴含的社区学习的本质特征。该研究提出从社区发现角度对学习者关系网络进行分析,首先设计... 学习型社区建设有助于加快教育强国落地,社区中在线学习者的各种协作互动行为,促进了学习者关系网络的生成。对该网络进行深入分析,可以挖掘其中蕴含的社区学习的本质特征。该研究提出从社区发现角度对学习者关系网络进行分析,首先设计基于图卷积网络和非负矩阵分解,并集成学习者关系网络信息和文本内容信息的新型学习型社区发现方法,提出四个社区特征度量指标,在真实的学习者关系网络中进行应用分析。结果表明,所提出的分析方法能有效挖掘学习者关系网络存在的学习兴趣主题社区,还可以对社区整体和社区成员个体进行特征分析,并且分析结果可为引导学习者的在线交互协作行为提供决策支持。最后,形成“构建可视化学习型社区—开展社区之间知识分享—促进各社区的互动合作—指标反馈下的反思迭代”的学习型社区赋能策略。通过策略赋能学习型社区高质量发展,以社区新质生产力组合助推教育强国建设。 展开更多
关键词 学习者关系网络 网络分析 学习型社区 社区发现 教育强国
下载PDF
网络微短剧的兴起与规范化发展 被引量:5
15
作者 罗昕 《人民论坛》 CSSCI 北大核心 2024年第5期102-105,共4页
近年来,微短剧的发展呈现数量级增长趋势,成为不少年轻人追捧的“电子榨菜”。然而,快节奏、小成本、低门槛的微短剧在火爆流行的同时也存在内容质量良莠不齐、扭曲个人和社会价值观、损害艺术创作生态、影响国家形象等问题。推动微短... 近年来,微短剧的发展呈现数量级增长趋势,成为不少年轻人追捧的“电子榨菜”。然而,快节奏、小成本、低门槛的微短剧在火爆流行的同时也存在内容质量良莠不齐、扭曲个人和社会价值观、损害艺术创作生态、影响国家形象等问题。推动微短剧健康可持续发展,需植根于网络信息内容生态治理,从政府端到平台端到行业端,推动多方主体协同发力,加强政府治理、平台治理与行业自治,通过多元共治规范网络信息内容生态建设,让微短剧引领新时代新风尚,成为人们雅俗共赏、喜闻乐见的网上精神产品。 展开更多
关键词 微短剧 网络生态 网络视听
下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:2
16
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
下载PDF
基于GIS的公交换乘网络构建及可达性分析 被引量:3
17
作者 程刚 郭磊善 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第2期191-197,共7页
为了提高公交换乘效率、优化公交系统,基于GIS软件构建公交换乘网络,运用该网络对换乘可达性进行了测度和分析.结合Space-P模型和网络分析法,以拉萨市城关区为研究区域,基于公交线路路径、站点、交叉口等基本信息构建同站换乘子网络.结... 为了提高公交换乘效率、优化公交系统,基于GIS软件构建公交换乘网络,运用该网络对换乘可达性进行了测度和分析.结合Space-P模型和网络分析法,以拉萨市城关区为研究区域,基于公交线路路径、站点、交叉口等基本信息构建同站换乘子网络.结合公交站点服务范围、步行通道路径、交叉口等信息构建异站换乘子网络.二者协同实现了基于ArcGIS的公交换乘网络构建,并依据该网络对公交线路的乘客在车时间和换乘系数进行测度和分析.结果表明:构建的换乘网络能够对乘客在车时间进行良好的测度,乘客在车时间最大值为68.68 min,最小值为2.00 min,乘客换乘在车时间平均值为29.90 min.该换乘网络能够对换乘系数进行良好的测度,得到有效换乘线路90 300条,换乘系数最大为4条(线路为62条),最小为0条(线路为1 354条).采用可达性度量模型,可实现对公交站点时间可达性和换乘可达性的良好测度和分析. 展开更多
关键词 公共交通 公交网络 换乘网络 GIS 可达性 Space-P模型 网络分析法
下载PDF
大规模复杂终端网络的云原生强化设计 被引量:1
18
作者 李振华 王泓懿 +2 位作者 李洋 林灏 杨昕磊 《计算机研究与发展》 EI CSCD 北大核心 2024年第1期2-19,共18页
作为互联网数据传输的“最后一公里”,终端网络看似简单却构成99%的性能瓶颈.经典设计面向典型设备常规环境,难以兼顾多样化场景,导致严重性能落差.通过云端汇聚并深度诊断大规模终端网络异常,在可用、可靠、可信3个关键维度揭示经典设... 作为互联网数据传输的“最后一公里”,终端网络看似简单却构成99%的性能瓶颈.经典设计面向典型设备常规环境,难以兼顾多样化场景,导致严重性能落差.通过云端汇聚并深度诊断大规模终端网络异常,在可用、可靠、可信3个关键维度揭示经典设计多处重要缺陷,采用跨层跨代的协同强化方法针对性修复(如时变非齐次4G/5G双连接管理方法最小化断网概率),实现无场景预设的自调控机制设计.应用于公安部高速网络、1700万“测网速”app用户、七千万小米手机、一亿百度手机卫士用户以及九亿WiFi设备.近年来进一步开展基于云端模拟器的前瞻网络设计,无需真实用户设备参与即可发现并修复潜在缺陷,让终端网络设计“生于云、长于云”.研究成果应用于华为DevEco Studio集成开发环境、腾讯应用市场、谷歌安卓模拟器及字节跳动多款流行应用(如抖音和今日头条). 展开更多
关键词 终端网络 网络测量 网络设计 云原生 网络模拟
下载PDF
网络政务互动中的政府形象管理策略与话语实践研究 被引量:1
19
作者 钱永红 袁周敏 《外语研究》 CSSCI 北大核心 2024年第5期17-22,87,共7页
目前政府形象的相关研究大多从管理学及传播学视角开展,对形象构建过程中所依赖的话语使用关注不足。本研究基于形象管理理论和网络政务互动语料,考察政府在政务互动中选择的形象管理策略及其依赖的话语实践资源。研究发现,网络政务中... 目前政府形象的相关研究大多从管理学及传播学视角开展,对形象构建过程中所依赖的话语使用关注不足。本研究基于形象管理理论和网络政务互动语料,考察政府在政务互动中选择的形象管理策略及其依赖的话语实践资源。研究发现,网络政务中的政府形象管理是一种互动反馈式管理,主要包括积极呈现型管理和防御型管理两大策略类型,采用的话语实践方式主要包括言语行为域、话语域、文体域和参与域四个域的语言资源,着重构建了负责型、亲民型、服务型、作为型、法治型等以人民为中心的新时代政府形象。 展开更多
关键词 政府网络形象 网络政务互动 形象管理 话语实践
下载PDF
数字化转型提升企业创新效率的网络机制——合作和知识双重创新网络结构洞的中介作用 被引量:3
20
作者 卫力 王亚玲 +1 位作者 张秀 赵振 《西部论坛》 CSSCI 北大核心 2024年第1期81-95,共15页
企业数字化转型不仅拓展和优化了创新网络,也使创新网络在创新驱动发展中的作用日益重要。基于网络结构洞理论,从创新合作网络和创新知识网络(双重创新网络)角度分析数字化转型通过增强企业在创新网络中的“桥梁”作用来提升企业创新效... 企业数字化转型不仅拓展和优化了创新网络,也使创新网络在创新驱动发展中的作用日益重要。基于网络结构洞理论,从创新合作网络和创新知识网络(双重创新网络)角度分析数字化转型通过增强企业在创新网络中的“桥梁”作用来提升企业创新效率的机制,并采用沪深A股制造业上市公司2013—2021年的数据进行实证检验,结果发现:制造业企业数字化转型能够显著提升其创新效率,该作用在非国有企业中更为显著;双重创新网络结构洞是数字化转型影响企业创新效率的中介变量,即存在“数字化转型水平提高→双重创新网络结构洞增加→创新效率提升”的影响路径;企业组织韧性提高能够强化数字化转型对网络结构洞的正向影响,但对网络结构洞影响创新效率没有显著的调节作用。因此,应积极推进企业数字化转型,通过拓展和优化创新网络来促进企业创新效率提升,并不断提高企业的组织韧性以有效化解转型风险。 展开更多
关键词 数字化转型 创新效率 结构洞 创新网络 创新合作网络 创新知识网络 组织韧性
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部