期刊文献+
共找到12,097篇文章
< 1 2 250 >
每页显示 20 50 100
基于MobileNetV3网络的龋病和根尖周炎根尖片的诊断 被引量:1
1
作者 王凯欣 刘丰 +1 位作者 曾令芳 刘超 《口腔疾病防治》 2024年第1期43-49,共7页
目的研究深度学习技术智能诊断龋齿和根尖周炎的效果,初步探讨深度学习在口腔疾病诊断中的应用价值。方法以2298张包含健康牙齿、龋病、根尖周炎的根尖片数据集为研究对象,随机划分为1573张训练集图像,233张验证集图像以及492张测试集... 目的研究深度学习技术智能诊断龋齿和根尖周炎的效果,初步探讨深度学习在口腔疾病诊断中的应用价值。方法以2298张包含健康牙齿、龋病、根尖周炎的根尖片数据集为研究对象,随机划分为1573张训练集图像,233张验证集图像以及492张测试集图像。通过多种神经网络对比验证,选择性能较好的MobileNetV3网络模型应用于牙病诊断,并通过调整网络超参数优化模型。采用精确率、准确率、召回率和F1分数评估模型识别龋齿和根尖周炎的能力,并使用类激活热力图对网络模型性能进行可视化分析。结果基于MobileNetV3网络模型的牙齿病变检测算法对健康牙齿、龋病和根尖周炎进行分类的精确率、召回率和准确率分别为99.42%、99.73%和99.60%,F1分数为99.57%,达到了较为理想的智能诊断效果。可视化类激活热力图也显示出网络模型能够较为准确地提取牙科病变的特征。结论基于MobileNetV3网络模型的牙齿病变检测算法能够排除图像质量和人为因素的干扰,具有较高的诊断准确率,可满足口腔医学教学和临床应用需求。 展开更多
关键词 牙科病变 龋病 根尖周炎 根尖片 智能诊断 图像处理 深度学习 mobilenetv3网络 类激活图 可视化分析
下载PDF
基于改进MobileNetV3网络煤矸识别方法研究 被引量:1
2
作者 陈伟 王爽 +2 位作者 李鑫 骆启生 马鑫 《佳木斯大学学报(自然科学版)》 CAS 2023年第1期159-162,共4页
为了解决煤矸识别中经典卷积神经网络有着计算量大、识别速度慢等问题,提出基于改进MobileNetV3网络对煤和矸石进行识别的方法。以MobileNetV3模型为基础模型,对激活函数、注意力机制进行改进并对网络层数进行缩减,最后通过测试准确率,F... 为了解决煤矸识别中经典卷积神经网络有着计算量大、识别速度慢等问题,提出基于改进MobileNetV3网络对煤和矸石进行识别的方法。以MobileNetV3模型为基础模型,对激活函数、注意力机制进行改进并对网络层数进行缩减,最后通过测试准确率,F1分数,浮点运算次数(FLOPs)作为模型评估的基准,结果表明:改进MobileNetV3后的测试准确率为99.5%,F1分数为0.995,FLOPs为50455003次,通过该模型与MobileNetV3,EfficientNet, AlexNet模型对比,可知该模型的各项指标均高于其他模型,适合做煤矸识别模型。 展开更多
关键词 煤矸识别 图像增强 mobilenetv3 模型评估
下载PDF
基于MobileNetV3卷积神经网络的供水管道漏损音频分类
3
作者 陈双叶 徐雷桁 +3 位作者 黄成意 张智武 张林 韩默 《北京工业大学学报》 CAS CSCD 北大核心 2024年第7期797-804,共8页
为了对城市供水管网漏损音进行准确识别,提出一种基于MobileNetV3的供水管道漏损音频分类识别方法。首先将ROPP数据集中的音频文件进行离线数据增强,将漏损信号转变为对数梅尔谱图并采用谱减法实现数据降噪;然后使用注意力机制模块与Mob... 为了对城市供水管网漏损音进行准确识别,提出一种基于MobileNetV3的供水管道漏损音频分类识别方法。首先将ROPP数据集中的音频文件进行离线数据增强,将漏损信号转变为对数梅尔谱图并采用谱减法实现数据降噪;然后使用注意力机制模块与MobileNetV3网络训练识别并提取图像特征;最后使用Softmax函数对漏损音频进行分类。实验结果表明,该方法可以使漏水类别的分类精确度达到99.40%,召回率达到99.20%。 展开更多
关键词 声音事件分类 水管泄漏检测 mobilenetv3 数据增强 谱减法 压缩奖惩网络模块
下载PDF
基于改进轻量卷积神经网络MobileNetV3的人脸表情识别
4
作者 雷晓鹏 《现代计算机》 2024年第10期29-34,共6页
人脸表情识别在授课中应用的及时检测可有效提升教育质量和学生参与度。为实现人脸表情识别在授课中的实时检测,该研究基于卷积神经网络MobileNetV3进行学习,对SE和卷积层进行了改进,以构建人脸表情识别模型,可识别八种不同的表情类别... 人脸表情识别在授课中应用的及时检测可有效提升教育质量和学生参与度。为实现人脸表情识别在授课中的实时检测,该研究基于卷积神经网络MobileNetV3进行学习,对SE和卷积层进行了改进,以构建人脸表情识别模型,可识别八种不同的表情类别。研究空洞卷积的位置对模型性能的影响,发现将空洞卷积放在网络的前部对性能有积极影响,而放在后部则会导致性能下降。同时,通过引入SSE(space squeeze-and-excitation)模块并优化其位置和结构,进一步提高了模型性能。最终提出的MobileNetV3改进版本在参数数量和模型文件大小上有显著减小,但精度下降了1%左右。对模型进行了多次随机试验,鲁棒性良好。该研究可为人脸表情识别在授课中的实时应用提供理论基础和技术支持,未来将致力于开发可在移动端应用的人脸表情识别系统。 展开更多
关键词 人脸表情识别 卷积神经网络 mobilenetv3 空洞卷积 SSE模块
下载PDF
基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别
5
作者 姜柘宇 《农业灾害研究》 2024年第7期16-18,共3页
番茄叶发生较为普遍,现有的检测手段存在检测效率和准确性不高的问题。因此,利用深度学习技术对番茄叶进行诊断意义重大。近年来,以卷积神经网络(CNN)为代表的作物病害诊断方法凭借较强的特征抽取能力,已成为作物病害诊断的一种重要手... 番茄叶发生较为普遍,现有的检测手段存在检测效率和准确性不高的问题。因此,利用深度学习技术对番茄叶进行诊断意义重大。近年来,以卷积神经网络(CNN)为代表的作物病害诊断方法凭借较强的特征抽取能力,已成为作物病害诊断的一种重要手段。为了解决传统卷积神经网络模型规模大、训练时间长的问题,拟基于MobileNetV3网络模型,通过模型压缩、模型结构和损耗函数的改进,以及训练参数的优化,实现基于MobileNetV3的网络模型。试验证明,在测试用例上,提出的方法能有效地提高识别率,减少运算量。同时,该方法能够提高系统的识别率。 展开更多
关键词 番茄叶片病害识别 卷积神经网络 迁移学习 mobilenetv3
下载PDF
基于MobileNetV3Small-ECA的水稻病害轻量级识别研究 被引量:6
6
作者 袁培森 欧阳柳江 +1 位作者 翟肇裕 田永超 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期253-262,共10页
为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上... 为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上微调优化。在开源水稻病害数据集上进行试验测试,试验结果表明,在非迁移学习下,识别准确率达到97.47%,在迁移学习下识别准确率达到99.92%,同时参数量减少26.69%。其次,通过Grad-CAM进行可视化,本文方法与其他注意力机制CBAM和SENET相比,ECA模块生成的结果与图像中病斑的位置和颜色更加一致,表明网络可以更好地聚焦水稻病害的特征,并且通过可视化和各水稻病害分析了误分类原因。本文方法实现了水稻病害识别模型的轻量化,使其能够在移动设备等资源受限的场景中部署,达到快速、高效、便携的目的。同时开发了基于Android的水稻病害识别系统,方便于在边缘端进行水稻病害识别分析。 展开更多
关键词 水稻病害识别 迁移学习 高效通道注意力机制 mobilenetv3Small 移动端部署
下载PDF
基于YOLOv5-MobileNetV3算法的目标检测 被引量:1
7
作者 曲英伟 刘锐 《计算机系统应用》 2024年第7期213-221,共9页
车辆行驶过程中,对前方目标的检测速度和检测精度一直是自动驾驶领域研究的重点.针对现有的目标检测算法模型,在复杂交通环境下,传统模型面对重叠目标容易导致误检和漏检的情况发生,大幅度提高检测精度又会造成计算量过大导致处理速度缓... 车辆行驶过程中,对前方目标的检测速度和检测精度一直是自动驾驶领域研究的重点.针对现有的目标检测算法模型,在复杂交通环境下,传统模型面对重叠目标容易导致误检和漏检的情况发生,大幅度提高检测精度又会造成计算量过大导致处理速度缓慢,实时性下降的问题.本文提出基于YOLOv5模型的改进算法.首先采用MobileNetV3网络替换原模型中主干网络C3的方案,实现网络仍保持轻量化的同时,提高模型响应速度.其次,提出一种非极大值抑制算法Adaptive-EIoU-NMS来提高重叠目标的识别精度.最后采用K-means++聚类算法替换原有聚类算法,生成更精确的锚框.实验结果表明,改进后的模型平均检测精度达到90.1%,检测速度达到89 f/s.实验结果可以证实,改进后的模型针对复杂场景检测精度和检测速度都有显著提高. 展开更多
关键词 自动驾驶 YOLOv5 mobilenetv3 Adaptive-EIoU-NMS K-means++
下载PDF
MobileNetV3与互易点损失函数相结合的雷达波形开集识别
8
作者 刘志林 王晋东 +2 位作者 李银龙 冯蕴天 王彬 《信息工程大学学报》 2024年第6期631-638,共8页
基于深度学习的雷达波形识别方法通常假定待识别信号属于一个已知并且种类有限的集合,但在实际场景中可能存在大量未知雷达信号,导致此类闭集识别方法难以适用。针对此问题,提出一种MobileNetV3与互易点损失函数相结合的开集识别方法。... 基于深度学习的雷达波形识别方法通常假定待识别信号属于一个已知并且种类有限的集合,但在实际场景中可能存在大量未知雷达信号,导致此类闭集识别方法难以适用。针对此问题,提出一种MobileNetV3与互易点损失函数相结合的开集识别方法。利用神经网络提取信号时频图像的高维特征向量,通过特征向量和互易点的距离来衡量已知信号和未知信号之间的差异,使模型在正确识别已知信号波形的同时也能对未知信号波形进行判别,实现雷达波形的开集识别功能。实验结果表明,在6~15 dB的信噪比范围内,该方法对已知信号波形的识别准确率接近100%,对未知信号波形的判别准确率达到90%以上。 展开更多
关键词 雷达信号 波形识别 崔-威廉斯分布 mobilenetv3网络 互易点
下载PDF
基于网络药理学和分子对接技术的2,3-吲哚醌抗少弱精症机制研究 被引量:1
9
作者 倪倍倍 代梦 +3 位作者 毕晓林 赵志臣 岳旺 隋忠国 《青岛大学学报(自然科学版)》 CAS 2024年第2期22-28,共7页
为研究2,3-吲哚醌(isatin, ISA)治疗少弱精症的可能作用靶点和作用机制,基于公共数据库分别获取ISA作用靶点和少弱精症相关疾病靶点,确定交集靶点,采用Cytoscape软件获取核心靶点。通过GO功能富集和KEGG通路分析交集靶点,采用分子对接预... 为研究2,3-吲哚醌(isatin, ISA)治疗少弱精症的可能作用靶点和作用机制,基于公共数据库分别获取ISA作用靶点和少弱精症相关疾病靶点,确定交集靶点,采用Cytoscape软件获取核心靶点。通过GO功能富集和KEGG通路分析交集靶点,采用分子对接预测ISA与靶点蛋白的结合能力。研究结果显示,ISA干预少弱精症主要涉及氧化应激、细胞凋亡和炎症等生物学过程,并与p53信号通路、细胞衰老通路和IL-17信号通路密切相关;经筛选确定8个核心靶点,ISA与其中6个核心靶点稳定结合。这表明,ISA可能通过作用于核心靶点CASP3、TP53、ESR1、PTGS2、TNF和ANXA5,调控p53信号通路和IL-17信号通路发挥抗少弱精症作用。 展开更多
关键词 2 3-吲哚醌 网络药理学 少弱精症 分子对接
下载PDF
基于改进MobileNetV3模型的服装流行色研究
10
作者 刘凤华 刘兆琪 +1 位作者 刘卫光 赵红升 《中原工学院学报》 CAS 2024年第1期1-7,共7页
鉴于目前基于权威部门发布数据分析预测服装流行色方法存在的数据集受限、不够精准、数据实时性差等问题,提出了基于改进MobileNetV3模型的服装流行色研究方法。采用改进的MobileNetV3模型,快速处理服装分类问题;以时序化电商平台销售... 鉴于目前基于权威部门发布数据分析预测服装流行色方法存在的数据集受限、不够精准、数据实时性差等问题,提出了基于改进MobileNetV3模型的服装流行色研究方法。采用改进的MobileNetV3模型,快速处理服装分类问题;以时序化电商平台销售数据为样本,基于GrabCut算法分析服装图像的主颜色;通过K-means算法统计主颜色和其他颜色的占比;对服装主颜色进行时间维度、服装种类维度和品牌维度的分析,以得出服装流行色的趋势数据。研究发现,相较于传统方法,基于改进MobileNetV3模型的服装流行色研究方法所得数据实时性更强、容量更大,其分析速率也更高。 展开更多
关键词 mobilenetv3 GRABCUT K-MEANS 流行色 主颜色提取
下载PDF
基于随机博弈与A3C深度强化学习的网络防御策略优选
11
作者 胡浩 赵昌军 +3 位作者 刘璟 宋昱欣 姜迎畅 张玉臣 《指挥与控制学报》 CSCD 北大核心 2024年第1期47-58,共12页
网络资源的有限性和攻防对抗的动态性导致最优防御策略难以选取,将深度强化学习引入攻防随机博弈建模领域,通过构建网络攻防actor策略网络和critic价值网络,结合随机博弈模型构建了网络攻防博弈决策模型总体结构,在此基础上引入异步优... 网络资源的有限性和攻防对抗的动态性导致最优防御策略难以选取,将深度强化学习引入攻防随机博弈建模领域,通过构建网络攻防actor策略网络和critic价值网络,结合随机博弈模型构建了网络攻防博弈决策模型总体结构,在此基础上引入异步优势演员评论家算法(asynchronous advantage actor-critic,A3C)智能体学习框架设计了防御策略选取算法;针对现有方法未考虑攻击方群体间的共谋攻击,引入群智能体性格特征,建立合作系数μ来刻画攻击者之间的合作对攻防策略收益的影响,进而得出对防御策略选取的影响,构建的博弈决策模型更符合攻防实际情况。实验结果表明,该方法的策略求解速度要优于现有方法,同时由于考虑了攻击合作关系,能够用于分析攻击者群体间合作关系对防御者决策的影响,防御策略选取更有针对性,期望防御收益更高。 展开更多
关键词 网络攻防 最优防御决策 随机博弈 多智能体 A3C算法
下载PDF
基于FPGA的MobileNetV1目标检测加速器设计
12
作者 严飞 郑绪文 +2 位作者 孟川 李楚 刘银萍 《现代电子技术》 北大核心 2025年第1期151-156,共6页
卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分... 卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分辨率超参数以及网络参数定点化来减少网络模型的参数量和计算量;其次,对卷积层和批量归一化层进行融合,减少网络复杂性,提升网络计算速度;然后,设计一种八通道核间并行卷积计算引擎,每个通道利用行缓存乘法和加法树结构实现卷积运算;最后,利用FPGA并行计算和流水线结构,通过对此八通道卷积计算引擎合理的复用完成三种不同类型的卷积计算,减少硬件资源使用量、降低功耗。实验结果表明,该设计可以对MobileNetV1目标检测进行硬件加速,帧率可达56.7 f/s,功耗仅为0.603 W。 展开更多
关键词 卷积神经网络 目标检测 FPGA mobilenetv1 并行计算 硬件加速
下载PDF
人工神经元网络模型预测3D打印部件力学性能的研究
13
作者 吕志敏 江豪 《塑料工业》 CAS CSCD 北大核心 2024年第1期59-66,100,共9页
熔融沉积成型(FDM)是一种高效的增材制造技术。将响应面模型与人工神经元网络(ANN)模型相结合,研究了FDM工艺的喷嘴温度、层高和层积角度对尼龙12(PA12)丝材制造部件力学性能的影响。当喷嘴温度、层高和层积角度分别在220~260℃、0.2~0.... 熔融沉积成型(FDM)是一种高效的增材制造技术。将响应面模型与人工神经元网络(ANN)模型相结合,研究了FDM工艺的喷嘴温度、层高和层积角度对尼龙12(PA12)丝材制造部件力学性能的影响。当喷嘴温度、层高和层积角度分别在220~260℃、0.2~0.4 mm、0°~90°之间变化时,部件拉伸强度和缺口冲击强度分别在35.69~60.89 MPa和5.48~19.83 kJ/m^(2)之间。喷嘴温度、层高、层积角度以及层积角度的二阶效应是影响部件拉伸强度的显著因素;喷嘴温度、层积角度以及层积角度的二阶效应是影响缺口冲击强度的显著因素。ANN模型预测拉伸强度和缺口冲击强度的最优结构分别是3-10-5-1和3-25-24-1,预测的拉伸强度和缺口冲击强度均方误差函数(MSE)最低分别为2.54×10^(-4)和2.07×10^(-4),回归系数均在0.97以上。与响应面的二次回归模型相比,ANN模型预测的拉伸强度和缺口冲击强度与实验值的标准偏差分别为0.46和0.32,远低于二次回归模型的2.43和1.58,更适合于优化非线性的FDM工艺。 展开更多
关键词 3D打印 熔融沉积成型 人工神经元网络 预测 力学性能
下载PDF
基于d3.js的miRNA调控网络图绘制模块的设计
14
作者 刘慧玲 谭定英 陈平平 《现代计算机》 2024年第10期101-104,共4页
对d3.js类库绘图功能进行研究,设计并实现了miRNA调控网络图绘制模块。模块能够将存储在数据库中的miRNA及其调控的靶基因等相关数据读取出来并形成JSON文件,结合d3.js可视化库,绘制有向的网络图及权重网络图。通过网络图能够在有限空... 对d3.js类库绘图功能进行研究,设计并实现了miRNA调控网络图绘制模块。模块能够将存储在数据库中的miRNA及其调控的靶基因等相关数据读取出来并形成JSON文件,结合d3.js可视化库,绘制有向的网络图及权重网络图。通过网络图能够在有限空间内更加清晰地展示miRNA及其靶基因之间的关系。 展开更多
关键词 d3.js JSON文件 miRNA调控网络
下载PDF
融合自注意力与残差神经网络的3D打印激光在机测量误差修正方法
15
作者 刘清涛 王子俊 +4 位作者 张玉隆 张义超 赵斌 尹恩怀 吕景祥 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期27-36,共10页
激光测量能够实现高效地非接触实时测量,被广泛应用于3D打印领域,但激光测量容易受测量条件、外部环境等多种因素的干扰,这些因素错综复杂,难以量化分析。为此,结合直射式激光三角测量原理,在分析测量精度影响因素的基础上,提出了一种... 激光测量能够实现高效地非接触实时测量,被广泛应用于3D打印领域,但激光测量容易受测量条件、外部环境等多种因素的干扰,这些因素错综复杂,难以量化分析。为此,结合直射式激光三角测量原理,在分析测量精度影响因素的基础上,提出了一种基于融合自注意力和残差神经网络的3D打印在机测量误差修正方法。首先,将影响测量精度的因素作为输入变量,采集激光测量值,得到样本数据集;然后利用残差网络提取出样本数据的深层次特征,并引入自注意力机制建立影响因素之间的联系,得到带权重的提取特征;再通过全连接网络对带权重特征进行学习,得到测量误差的预测值,基于该预测值完成对测量误差的修正。自主搭建了一套激光在机测量系统,采用红、绿、紫3种同材质彩色卡纸进行实验验证。结果表明,所提的方法与卷积神经网络和自注意力神经网络相比,均方误差、均方根误差和平均绝对误差均最小,稳定性最好,修正结果最接近真实值;对激光测量结果进行校正后,使其误差由原来的±28μm减小到±9μm以下,显著提高了3D打印激光在机测量的精度和稳定性。 展开更多
关键词 3D打印 激光在机测量 残差神经网络 自注意力机制 误差修正
下载PDF
基于改进的MobilenetV3热轧钢带表面缺陷分类 被引量:1
16
作者 熊政 车文刚 +1 位作者 保永莉 刘晓彤 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期182-186,共5页
提出一种基于轻量化神经网络MobilenetV3-large改进的热轧钢带表面缺陷分类算法,通过剪枝、大量削减卷积层数、调整通道大小和步长,以及修改对应的网络参数快速降低了参数量.为弥补修改模型带来的准确率下降的问题,将激活函数ReLU更换为... 提出一种基于轻量化神经网络MobilenetV3-large改进的热轧钢带表面缺陷分类算法,通过剪枝、大量削减卷积层数、调整通道大小和步长,以及修改对应的网络参数快速降低了参数量.为弥补修改模型带来的准确率下降的问题,将激活函数ReLU更换为Hard-Swish,引入置换注意力机制替换原模型中的通道注意力机制,在进一步降低参数量的同时提高运行效率和分类准确率.在NEU-CLS表面缺陷数据集中的试验结果表明,改进后的算法参数量为0.5 MB,相比原模型降低96.89%,训练图片的时间由19.81 ms/幅降至10.73 ms/幅,平均准确率为99.26%,比改进前提高了5.56%,表明改进后的算法可应用于实时分类. 展开更多
关键词 mobilenetv3算法 转移注意力 结构性剪枝 缺陷分类
下载PDF
基于IUV_5G Option3X架构网络规划与部署设计
17
作者 卢善勇 许景渊 《中国宽带》 2024年第1期1-3,共3页
本文基于IUV_5G Option3X架构,详细阐述了5G网络的规划与部署设计过程。首先介绍了5G NSA组网架构的背景和优势,然后深入探讨了IUV_5G全网部署与优化虚拟仿真平台的功能和应用。重点描述了核心网、无线网和承载网的部署过程,包括设备部... 本文基于IUV_5G Option3X架构,详细阐述了5G网络的规划与部署设计过程。首先介绍了5G NSA组网架构的背景和优势,然后深入探讨了IUV_5G全网部署与优化虚拟仿真平台的功能和应用。重点描述了核心网、无线网和承载网的部署过程,包括设备部署、数据配置和线路连接等具体步骤。通过业务验证确认了网络部署的成功,并对5G技术的未来发展进行了展望。 展开更多
关键词 5G网络 Option3X架构 NSA组网 虚拟仿真平台 核心网
下载PDF
改进TD3算法的机械臂三维路径规划方法
18
作者 马天 李超 杨嘉怡 《电光与控制》 北大核心 2025年第1期100-105,共6页
在军事航空领域中,复杂任务对机械臂路径规划提出了挑战。针对双延迟深度确定性策略梯度(TD3)算法学习效率低、样本利用率低的问题,提出了一种改进的TD3算法(Recurrent-TD3算法)。首先,将LSTM结合到策略网络与价值网络中,捕获航空控制... 在军事航空领域中,复杂任务对机械臂路径规划提出了挑战。针对双延迟深度确定性策略梯度(TD3)算法学习效率低、样本利用率低的问题,提出了一种改进的TD3算法(Recurrent-TD3算法)。首先,将LSTM结合到策略网络与价值网络中,捕获航空控制任务中的时间序列信息,增强对时间序列变化的响应能力,使其能够在决策时考虑历史动作和状态,提高网络的表达能力;然后,将事后经验回放(HER)技术集成到TD3算法中,以解决任务中稀疏奖励难以学习的问题,通过将未达到目标的经验转化为达到新目标的经验,从而更有效地利用样本;最后,设计了一种基于包围盒的碰撞检测流程,以提高机械臂在军用航空任务中的安全性。实验表明,该算法相比于其他算法能够更快地找到一条无碰撞的路径,且平均路径长度最短。 展开更多
关键词 机械臂 路径规则 TD3 长短期记忆网络 事后经验回放技术
下载PDF
基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别 被引量:13
19
作者 周巧黎 马丽 +1 位作者 曹丽英 于合龙 《智慧农业(中英文)》 2022年第1期47-56,共10页
番茄病害的及时检测可有效提升番茄的质量和产量。为实现番茄病害的实时无损伤检测,本研究提出了一种基于改进MobileNetV3的番茄叶片病害分类识别方法。首先选择轻量级卷积神经网络MobileNetV3,在Image Net数据集上进行预训练,将预训练... 番茄病害的及时检测可有效提升番茄的质量和产量。为实现番茄病害的实时无损伤检测,本研究提出了一种基于改进MobileNetV3的番茄叶片病害分类识别方法。首先选择轻量级卷积神经网络MobileNetV3,在Image Net数据集上进行预训练,将预训练得到的共享参数迁移到对番茄叶片病害识别的模型上并做微调处理。采用相同的训练方法对VGG16、ResNet50和Inception-V3三种深度卷积网络模型也进行迁移学习并进行对比,结果显示MobileNetV3的总体学习效果最好,在Mixup混合增强和focal loss损失函数下对10类番茄病害的平均测试识别准确率达到94.68%。在迁移学习的基础上继续改进MobileNetV3模型,在卷积层引入空洞卷积和感知机结构,采用GLU(Gated Liner Unit)闸门机制激活函数,训练得到最佳的番茄病害识别模型,平均测试的识别准确率98.25%,模型的数据规模43.57 MB,单张番茄病害图像的检测耗时仅0.27 s。经十折交叉验证(10-Fold Cross-Validation),模型的鲁棒性良好。本研究可为番茄叶片病害的实时检测提供理论基础和技术支持。 展开更多
关键词 番茄病害识别 卷积神经网络 迁移学习 mobilenetv3 激活函数 识别分类
下载PDF
基于深度迁移网络MobileNetV3的地形识别 被引量:4
20
作者 姚燕 胡立坤 郭军 《广西大学学报(自然科学版)》 CAS 北大核心 2021年第4期996-1007,共12页
传统地形识别算法,主要建立在人工提取特征和训练分类器的前提上,其通用能力有限且准确度不高,或者需要大量的数据集训练基础,这种方法训练的网络模型参数较大且预测耗时较长,不利于移植到移动端。因此,运用迁移学习思想,提出了一种基... 传统地形识别算法,主要建立在人工提取特征和训练分类器的前提上,其通用能力有限且准确度不高,或者需要大量的数据集训练基础,这种方法训练的网络模型参数较大且预测耗时较长,不利于移植到移动端。因此,运用迁移学习思想,提出了一种基于深度迁移网络的地形识别算法。采用轻量级卷积神经网络MobileNetV3,在爬虫获取和自建适量数据集基础上,对神经网络进行迁移学习。首先,采用图像分类数据集ImageNet上的预训练成果,根据预训练模型权重对MobileNetV3网络进行初始化,实现对模型大规模共享参数的迁移;然后,通过在自建数据集GXU-Terrain6上进行新的训练,微调模型参数,进而得到新的分类模型;最后,利用训练好的模型对地形类别进行预测,从而完成识别任务。提出算法在GXU-Terrain6测试集上取得了93.00%的平均预测准确率。实验结果表明,基于深度迁移的地形识别算法运用较少数据,可获得较高的识别准确率,网络实时性好,适合向移动端移植。 展开更多
关键词 地形识别 迁移学习 mobilenetv3 轻量级网络 移动端
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部