We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the m...We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.展开更多
The mobility edges and reentrant localization transitions are studied in one-dimensional dimerized lattice with non-Hermitian either uniform or staggered quasiperiodic potentials.We find that the non-Hermitian uniform...The mobility edges and reentrant localization transitions are studied in one-dimensional dimerized lattice with non-Hermitian either uniform or staggered quasiperiodic potentials.We find that the non-Hermitian uniform quasiperiodic disorder can induce an intermediate phase where the extended states coexist with the localized ones,which implies that the system has mobility edges.The localization transition is accompanied by the PT symmetry breaking transition.While if the non-Hermitian quasiperiodic disorder is staggered,we demonstrate the existence of multiple intermediate phases and multiple reentrant localization transitions based on the finite size scaling analysis.Interestingly,some already localized states will become extended states and can also be localized again for certain non-Hermitian parameters.The reentrant localization transitions are associated with the intermediate phases hosting mobility edges.Besides,we also find that the non-Hermiticity can break the reentrant localization transition where only one intermediate phase survives.More detailed information about the mobility edges and reentrant localization transitions are presented by analyzing the eigenenergy spectrum,inverse participation ratio,and normalized participation ratio.展开更多
We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic diso...We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic disorders can also support the mobility edges,which is very similar to the models with slowly varying quasi-periodic disorders.The energy-matching method is employed to determine the locations of mobility edges in both types of models.These results of mobility edges are verified by numerical calculations in various examples.We also provide qualitative arguments to support the fact that large quasi-periodic disorders will lead to the existence of mobility edges.展开更多
A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence...A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence of PT-symmetry breaking.By the inverse participation ratio,we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states,and this correspondence is precise and effective to detect the mobility edges.After investigating the topological properties,we arrived at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.展开更多
We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the t...We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real–complex spectrum transition and the localization–delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.展开更多
The emergence of the mobility edge(ME)has been recognized as an important characteristic of Anderson localization.The difficulty in understanding the physics of the MEs in three-dimensional(3 D)systems from a microsco...The emergence of the mobility edge(ME)has been recognized as an important characteristic of Anderson localization.The difficulty in understanding the physics of the MEs in three-dimensional(3 D)systems from a microscopic image encourages the development of models in lower-dimensional systems that have exact MEs.While most of the previous studies are concerned with one-dimensional(1 D)quasiperiodic systems,the analytic results that allow for an accurate understanding of two-dimensional(2 D)cases are rare.In this work,we disclose an exactly solvable 2 D quasicrystal model with parity-time(PT)symmetry displaying exact MEs.In the thermodynamic limit,we unveil that the extended-localized transition point,observed at the PT symmetry breaking point,is topologically characterized by a hidden winding number defined in the dual space.The coupling waveguide platform can be used to realize the 2 D non-Hermitian quasicrystal model,and the excitation dynamics can be used to detect the localization features.展开更多
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep...Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.展开更多
Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing...Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks.展开更多
ultra-Dense Network(UDN)has been envisioned as a promising technology to provide high-quality wireless connectivity in dense urban areas,in which the density of Access Points(APs)is increased up to the point where it ...ultra-Dense Network(UDN)has been envisioned as a promising technology to provide high-quality wireless connectivity in dense urban areas,in which the density of Access Points(APs)is increased up to the point where it is comparable with or surpasses the density of active mobile users.In order to mitigate inter-AP interference and improve spectrum efficiency,APs in UDNs are usually clustered into multiple groups to serve different mobile users,respectively.However,as the number of APs increases,the computational capability within an AP group has become the bottleneck of AP clustering.In this paper,we first propose a novel UDN architecture based on Mobile Edge Computing(MEC),in which each MEC server is associated with a user-centric AP cluster to act as a mobile agent.In addition,in the context of MEC-based UDN,we leverage mobility prediction techniques to achieve a dynamic AP clustering scheme,in which the cluster structure can automatically adapt to the dynamic distribution of user traffic in a specific area.Simulation results show that the proposed scheme can highly increase the average user throughput compared with the baseline algorithm using max-SINR user association and equal bandwidth allocation,while it guarantees at the same time low transmission delay.展开更多
We analytically and numerically study a 1 D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytic...We analytically and numerically study a 1 D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytically demonstrate that this critical energy is a constant independent of strength of potentials.Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions,the inverse participation rate and the multifractal theory.All numerical results are in excellent agreement with the analytical results.Finally,we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.展开更多
Recently, an interesting family of quasiperiodic models with exact mobility edges(MEs) has been proposed(Phys.Rev. Lett. 114 146601(2015)). It is self-dual under a generalized duality transformation. However, su...Recently, an interesting family of quasiperiodic models with exact mobility edges(MEs) has been proposed(Phys.Rev. Lett. 114 146601(2015)). It is self-dual under a generalized duality transformation. However, such transformation is not obvious to map extended(localized) states in the real space to localized(extended) ones in the Fourier space. Therefore,it needs more convictive evidences to confirm the existence of MEs. We use the second moment of wave functions, Shannon information entropies, and Lypanunov exponents to characterize the localization properties of the eigenstates, respectively.Furthermore, we obtain the phase diagram of the model. Our numerical results support the existing analytical findings.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for Io...Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments.展开更多
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ...In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.展开更多
Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and ...Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.展开更多
Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile termin...Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.展开更多
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy....Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.展开更多
文摘We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2016YFA0302104)the National Natural Science Foundation of China(Grant Nos.12074410,12047502,11934015,11947301,and 11774397)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)the Fellowship of China Postdoctoral Science Foundation(Grant No.2020M680724).
文摘The mobility edges and reentrant localization transitions are studied in one-dimensional dimerized lattice with non-Hermitian either uniform or staggered quasiperiodic potentials.We find that the non-Hermitian uniform quasiperiodic disorder can induce an intermediate phase where the extended states coexist with the localized ones,which implies that the system has mobility edges.The localization transition is accompanied by the PT symmetry breaking transition.While if the non-Hermitian quasiperiodic disorder is staggered,we demonstrate the existence of multiple intermediate phases and multiple reentrant localization transitions based on the finite size scaling analysis.Interestingly,some already localized states will become extended states and can also be localized again for certain non-Hermitian parameters.The reentrant localization transitions are associated with the intermediate phases hosting mobility edges.Besides,we also find that the non-Hermiticity can break the reentrant localization transition where only one intermediate phase survives.More detailed information about the mobility edges and reentrant localization transitions are presented by analyzing the eigenenergy spectrum,inverse participation ratio,and normalized participation ratio.
基金Project supported by the National Natural Science Foundation of China (Grant No.11874272)Science Specialty Program of Sichuan University (Grant No.2020SCUNL210)。
文摘We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic disorders can also support the mobility edges,which is very similar to the models with slowly varying quasi-periodic disorders.The energy-matching method is employed to determine the locations of mobility edges in both types of models.These results of mobility edges are verified by numerical calculations in various examples.We also provide qualitative arguments to support the fact that large quasi-periodic disorders will lead to the existence of mobility edges.
基金the National Natural Science Foundation of China(Grant Nos.11835011 and 12174346).
文摘A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without PT-symmetry is studied.By analyzing the spectrum,we discovered that there still exists real-complex energy transition even if the inexistence of PT-symmetry breaking.By the inverse participation ratio,we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states,and this correspondence is precise and effective to detect the mobility edges.After investigating the topological properties,we arrived at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.
基金supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200737)NUPTSF (Grant Nos. NY220090 and NY220208)+2 种基金the National Natural Science Foundation of China (Grant No. 12074064)the Innovation Research Project of Jiangsu Province, China (Grant No. JSSCBS20210521)China Postdoctoral Science Foundation (Grant No. 2022M721693)。
文摘We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real–complex spectrum transition and the localization–delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.
基金supported by the National Natural Science Foundation of China(Grant Nos.11604188,12047571)Beijing National Laboratory for Condensed Matter Physics+4 种基金STIP of Higher Education Institutions in Shanxi(Grant No.2019L0097)supported by the Nankai Zhide Foundationsupported by the National Natural Science Foundation of China(Grant No.11974413)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)supported by the Natural Science Foundation for Shanxi Province(Grant No.1331KSC)。
文摘The emergence of the mobility edge(ME)has been recognized as an important characteristic of Anderson localization.The difficulty in understanding the physics of the MEs in three-dimensional(3 D)systems from a microscopic image encourages the development of models in lower-dimensional systems that have exact MEs.While most of the previous studies are concerned with one-dimensional(1 D)quasiperiodic systems,the analytic results that allow for an accurate understanding of two-dimensional(2 D)cases are rare.In this work,we disclose an exactly solvable 2 D quasicrystal model with parity-time(PT)symmetry displaying exact MEs.In the thermodynamic limit,we unveil that the extended-localized transition point,observed at the PT symmetry breaking point,is topologically characterized by a hidden winding number defined in the dual space.The coupling waveguide platform can be used to realize the 2 D non-Hermitian quasicrystal model,and the excitation dynamics can be used to detect the localization features.
基金supported by the Innovation Fund Project of Jiangxi Normal University(YJS2022065)the Domestic Visiting Program of Jiangxi Normal University.
文摘Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency.
基金supported in part by the National Natural Science Foundation of China under Grant 62072096in part by the Fundamental Research Funds for the Central Universities under Grant 2232020A12+3 种基金in part by the International S&T Cooperation Program of Shanghai Science and Technology Commission under Grant 20220713000in part by “Shuguang Program” of Shanghai Education Development Foundation and Shanghai Municipal Education Commissionin part by the Young Top-notch Talent Program in Shanghaiin part by “the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University” under Grant CUSF-DH-D-2021058。
文摘Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks.
基金This work was partially supported by the National Natural Science Foundation of China(61801208,61671233,61931023)the Jiangsu Science Foundation(BK20170650)+2 种基金the Postdoctoral Science Foundation of China(BX201700118,2017M621712)the Jiangsu Postdoctoral Science Foundation(1701118B)the open research fund of National Mobile Communications Research Laboratory(2019D02).
文摘ultra-Dense Network(UDN)has been envisioned as a promising technology to provide high-quality wireless connectivity in dense urban areas,in which the density of Access Points(APs)is increased up to the point where it is comparable with or surpasses the density of active mobile users.In order to mitigate inter-AP interference and improve spectrum efficiency,APs in UDNs are usually clustered into multiple groups to serve different mobile users,respectively.However,as the number of APs increases,the computational capability within an AP group has become the bottleneck of AP clustering.In this paper,we first propose a novel UDN architecture based on Mobile Edge Computing(MEC),in which each MEC server is associated with a user-centric AP cluster to act as a mobile agent.In addition,in the context of MEC-based UDN,we leverage mobility prediction techniques to achieve a dynamic AP clustering scheme,in which the cluster structure can automatically adapt to the dynamic distribution of user traffic in a specific area.Simulation results show that the proposed scheme can highly increase the average user throughput compared with the baseline algorithm using max-SINR user association and equal bandwidth allocation,while it guarantees at the same time low transmission delay.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20200737)NUPTSF(Grants Nos.NY220090 and NY220208)+2 种基金the National Natural Science Foundation of China(Grant No.12074064)the Innovation Research Project of Jiangsu Province,China(Grant No.JSSCBS20210521)NJUPT-STITP(Grant No.XYB2021294)。
文摘We analytically and numerically study a 1 D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytically demonstrate that this critical energy is a constant independent of strength of potentials.Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions,the inverse participation rate and the multifractal theory.All numerical results are in excellent agreement with the analytical results.Finally,we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475075 and 61170321)
文摘Recently, an interesting family of quasiperiodic models with exact mobility edges(MEs) has been proposed(Phys.Rev. Lett. 114 146601(2015)). It is self-dual under a generalized duality transformation. However, such transformation is not obvious to map extended(localized) states in the real space to localized(extended) ones in the Fourier space. Therefore,it needs more convictive evidences to confirm the existence of MEs. We use the second moment of wave functions, Shannon information entropies, and Lypanunov exponents to characterize the localization properties of the eigenstates, respectively.Furthermore, we obtain the phase diagram of the model. Our numerical results support the existing analytical findings.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金supported in part by Beijing Natural Science Foundation under Grant L232050in part by the Project of Cultivation for young topmotch Talents of Beijing Municipal Institutions under Grant BPHR202203225in part by Young Elite Scientists Sponsorship Program by BAST under Grant BYESS2023031.
文摘Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments.
基金The Natural Science Foundation of Henan Province(No.232300421097)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT019,24HASTIT038)+2 种基金the China Postdoctoral Science Foundation(No.2023T160596,2023M733251)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)the Song Shan Laboratory Foundation(No.YYJC022022003)。
文摘In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.
基金supported by the National Natural Science Foundation of China(62072475)the Fundamental Research Funds for the Central Universities of Central South University(CX20230356)。
文摘Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.
文摘Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.
基金supported by Jilin Provincial Science and Technology Department Natural Science Foundation of China(20210101415JC)Jilin Provincial Science and Technology Department Free exploration research project of China(YDZJ202201ZYTS642).
文摘Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.