期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Approximate Bound State Solutions for Certain Molecular Potentials
1
作者 Mahmoud Farout Mohammed Yasin Sameer M. Ikhdair 《Journal of Applied Mathematics and Physics》 2021年第4期736-750,共15页
We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with an approximation t... We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with an approximation to the centrifugal term. The bound state energy eigenvalues for any angular momentum quantum number <em>l</em> and the corresponding un-normalized wave functions are calculated. The mixed potential which in some particular cases gives the solutions for different potentials: the Manning-Rosen, the Mobius square, the inversely quadratic Yukawa and the Hulthén potentials along with their bound state energies are obtained. 展开更多
关键词 Schrödinger Equation mobius potential Manning-Rosen potential Quadratic Yukawa potential Hulthén potential Bound State Energies Wave Functions
下载PDF
Arbitrary-state solutions of the Dirac equation for a Mbius square potential using the Nikiforov-Uvarov method 被引量:1
2
作者 E.Maghsoodi H.Hassanabadi +1 位作者 H.Rahimov S.Zarrinkamar 《Chinese Physics C》 SCIE CAS CSCD 2013年第4期26-35,共10页
We inquire into spin and pseudospin symmetries of the Dirac equation under a Mbius square-type potential using the Nikiforov-Uvarov method to calculate the bound state solutions. We numerically discuss the problem and... We inquire into spin and pseudospin symmetries of the Dirac equation under a Mbius square-type potential using the Nikiforov-Uvarov method to calculate the bound state solutions. We numerically discuss the problem and include various explanatory figures. 展开更多
关键词 Dirac equation spin symmetry pseudospin symmetry mobius potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部