期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures 被引量:55
1
作者 Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第3期437-446,共10页
A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(... A hypersurface x: M→S^(n+1) without umbilic point is called a Mbius isoparametric hypersurface if its Mbius form Φ=-ρ^(-2)∑_i(ei(H)+∑_j(h_(ij)-Hδ_(ij))e_j(logρ))θ_i vanishes and its Mbius shape operator S=ρ^(-1)(S-Hid) has constant eigenvalues. Here {e_i} is a local orthonormal basis for I=dx·dx with dual basis {θ_i}, II=∑_(ij)h_(ij)θ_iθ_J is the second fundamental form, H=1/n∑_i h_(ij), ρ~2=n/(n-1)(‖II‖~2-nH^2) and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S^(n+1) is a Mbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Mbius isoparametric hypersurfaces in S^(n+1) with two distinct principal curvatures up to Mbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Mbius isoparametric hypersurface embedded in S^(n+1) can take only the values 2, 3, 4, 6. 展开更多
关键词 mobius geometry Isoparametric hypersurface Principal curvature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部