The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi (GMZ) bentonite under coupled thermo-hydro-mechanical (THM) conditions in deep geological disposal. A numerical study of the test is...The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi (GMZ) bentonite under coupled thermo-hydro-mechanical (THM) conditions in deep geological disposal. A numerical study of the test is conducted in this paper. The principal THM characteristics of the bentonite are presented at first. A THM model is then presented to tackle the complex coupling behavior of the bentonite. The model of Alonso-Gens is incorporated to reproduce the mechanical behavior of the bentonite under unsaturated conditions. With the proposed model, numerical simulations of the China-mock-up test are carried out by using the code of LAGAMINE. The time variations associated with the temperature, degree of saturation, suction and swelling pressure of the compacted bentonite are studied. The results suggest that the proposed model is able to reproduce the mechanical behavior of the bentonite, and to predict moisture motion under coupled THM conditions.展开更多
According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute...According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG). A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ)-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the nu- merical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC) processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS), and the design of HLW repository.展开更多
Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was ...Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.展开更多
文摘The China-mock-up test is to evaluate the performance of the compacted Gaomiaozi (GMZ) bentonite under coupled thermo-hydro-mechanical (THM) conditions in deep geological disposal. A numerical study of the test is conducted in this paper. The principal THM characteristics of the bentonite are presented at first. A THM model is then presented to tackle the complex coupling behavior of the bentonite. The model of Alonso-Gens is incorporated to reproduce the mechanical behavior of the bentonite under unsaturated conditions. With the proposed model, numerical simulations of the China-mock-up test are carried out by using the code of LAGAMINE. The time variations associated with the temperature, degree of saturation, suction and swelling pressure of the compacted bentonite are studied. The results suggest that the proposed model is able to reproduce the mechanical behavior of the bentonite, and to predict moisture motion under coupled THM conditions.
文摘According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG). A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ)-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the nu- merical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC) processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS), and the design of HLW repository.
基金supported by National Natural Science Foundation of China(No.11205049)the National Magnetic Confinement Fusion Science Program of China(No.2011GB110004)
文摘Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.