This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-...This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.展开更多
We design an electromechanical transducer harvesting system with one-to-one internal resonance that can emerge a broader spectrum vibrations. The novel harvester is composed of a Duffing electrical circuit coupled to ...We design an electromechanical transducer harvesting system with one-to-one internal resonance that can emerge a broader spectrum vibrations. The novel harvester is composed of a Duffing electrical circuit coupled to a mobile rod, and the coupling between both components is realized via the electromagnetic force. Approximate analytical solutions of the electromechanical system are carried out by introducing the multiple scales analysis, also the nonlinear modulation equation for one-to-one internal resonance is obtained. The character of broadband harvesting performance are analyzed, the two peaks and one jump phenomenon bending to the right for variation of control parameters are observed. It is shown that an advanced bandwidth over a corresponding linear model that does not possess a modal energy interchange.展开更多
Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency...Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.展开更多
This paper proposes a two-to-one internal resonance to widen the bandwidth of vibratory energy harvesters.To describe the improved characteristic,an electromagnetic spring-pendulum harvester is designed.Approximate an...This paper proposes a two-to-one internal resonance to widen the bandwidth of vibratory energy harvesters.To describe the improved characteristic,an electromagnetic spring-pendulum harvester is designed.Approximate analytical solutions of the electromechanical coupled system are carried out by introducing the method of multiple scales,and the frequency response relationships of the displacement and the current are obtained.The character of broadband harvesting performance is examined,the two peaks and double jump phenomena for variation of design parameters were observed.The effect of key control parameters on the harvesters bandwidth is considered,and the nonlinear behaviors of the harvester are validated via numerical results.展开更多
In the realm of human-computer interaction, accurately discerning the user's emotional state during a conversation has become increasingly critical. Multimodal emotion recognition has garnered considerable attenti...In the realm of human-computer interaction, accurately discerning the user's emotional state during a conversation has become increasingly critical. Multimodal emotion recognition has garnered considerable attention.However, the task of multimodal emotion recognition still faces several challenges. Especially, the models are unable to effectively extract multimodal contextual and interaction information, which results in a significant redundancy in the concatenated features representation. To mitigate this issue, a cross-modal fusion network based on graph feature learning(CFNet-GFL) model is proposed. Firstly, the model employs a cross-modal module to integrate multiple feature representations, resulting in more precise feature embedding. This alleviates the issue of information redundancy in the fusion process. Secondly, the model leverages a graph feature learning approach to extract intra-modal contextual preferences and inter-modal information interactions. By capturing the diversity and consistency of multimodal information, the model enhances the ability to understand emotions. Finally, the performance of the CFNet-GFL model is demonstrated by some experiments on the IEMOCAP and MELD datasets. The w-F1 scores show a significant improvement of approximately 2.08% and 1.36% respectively. These findings demonstrate the effectiveness of the model in multimodal emotion recognition.展开更多
文摘This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11632008 and 11702119)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170565)+1 种基金China Postdoctoral Science Foundation (Grant No. 2020M671353)Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2020Z376)。
文摘We design an electromechanical transducer harvesting system with one-to-one internal resonance that can emerge a broader spectrum vibrations. The novel harvester is composed of a Duffing electrical circuit coupled to a mobile rod, and the coupling between both components is realized via the electromagnetic force. Approximate analytical solutions of the electromechanical system are carried out by introducing the multiple scales analysis, also the nonlinear modulation equation for one-to-one internal resonance is obtained. The character of broadband harvesting performance are analyzed, the two peaks and one jump phenomenon bending to the right for variation of control parameters are observed. It is shown that an advanced bandwidth over a corresponding linear model that does not possess a modal energy interchange.
基金This study was co-supported by the National Natural Science Foundation of China(No.52275293)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515010774)+1 种基金the Basic Research Program of Shenzhen,China(No.JCYJ 20190806142816524)the National Key Laboratory of Science and Technology on Aerodynamic Design and Research,China(No.61422010301).
文摘Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.
基金supported by the National Natural Science Foundation of China(Grants 11632008,11702119,and 11972173)the Natural Science Foundation of Jiangsu Province(Grant BK20170565)+1 种基金the Qing Lan Project of Jiangsu Provincethe Training program for Young Talents of Jiangsu University.
文摘This paper proposes a two-to-one internal resonance to widen the bandwidth of vibratory energy harvesters.To describe the improved characteristic,an electromagnetic spring-pendulum harvester is designed.Approximate analytical solutions of the electromechanical coupled system are carried out by introducing the method of multiple scales,and the frequency response relationships of the displacement and the current are obtained.The character of broadband harvesting performance is examined,the two peaks and double jump phenomena for variation of design parameters were observed.The effect of key control parameters on the harvesters bandwidth is considered,and the nonlinear behaviors of the harvester are validated via numerical results.
基金supported by National Natural Science Foundation of China (62201452)。
文摘In the realm of human-computer interaction, accurately discerning the user's emotional state during a conversation has become increasingly critical. Multimodal emotion recognition has garnered considerable attention.However, the task of multimodal emotion recognition still faces several challenges. Especially, the models are unable to effectively extract multimodal contextual and interaction information, which results in a significant redundancy in the concatenated features representation. To mitigate this issue, a cross-modal fusion network based on graph feature learning(CFNet-GFL) model is proposed. Firstly, the model employs a cross-modal module to integrate multiple feature representations, resulting in more precise feature embedding. This alleviates the issue of information redundancy in the fusion process. Secondly, the model leverages a graph feature learning approach to extract intra-modal contextual preferences and inter-modal information interactions. By capturing the diversity and consistency of multimodal information, the model enhances the ability to understand emotions. Finally, the performance of the CFNet-GFL model is demonstrated by some experiments on the IEMOCAP and MELD datasets. The w-F1 scores show a significant improvement of approximately 2.08% and 1.36% respectively. These findings demonstrate the effectiveness of the model in multimodal emotion recognition.