The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution an...The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.展开更多
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ...In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.展开更多
In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution ...In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.展开更多
Sandstone samples with precracks of different dip angles were collected from a coal mine roof and subjected to uniaxial compression tests,and acoustic emission(AE)and scanning electron microscopy(SEM)were used to stud...Sandstone samples with precracks of different dip angles were collected from a coal mine roof and subjected to uniaxial compression tests,and acoustic emission(AE)and scanning electron microscopy(SEM)were used to study how the crack dip angle affected the fracture mechanism.In the precracked sandstone samples,as the dip angle between the crack line and loading direction decreased,so did the peak stress and its completion time.The SEM observations revealed a fracture transition from tensile cleavage to shear slip,which was manifested by a microstructure change from aggregate to staggered.According to energy conversion,a decreased crack dip angle results in gradually decreasing total and dissipative peak energies,whose variation amplitudes at different stages are consistent with those of the peak stress of the samples.The decreased crack dip angle lowered the stress required to trigger the first appearance of AE energy peaks and ring-down counts,as well as shortening the period before the occurrence of the first AE peak signal.However,the AE energy and ring-down count during the failure stage after the stress peak increased gradually.A stepped increase was observed in the AE ring-down count curves,with each step corresponding to a jump in the stress-strain curve.From the characteristics of the AE signal of the fracture of a precracked rock sample,the occurrence of joints or faults in the rock mass can be reasonably inferred.This is expected to provide a new method and approach for predicting coal and rock dynamic disasters.展开更多
As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from d...As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.展开更多
The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using ...The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using the Daubechies discrete wavelets, and then decomposed into different wavelet levels using the programs developed by the authors. Each level is examined for its specific frequency range. The ratio of energy in different levels to the total energy gives information on the failure modes (coating micro-failures and substrate micro-failures) associated with TBCs system.展开更多
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the...Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.展开更多
Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signa...Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.展开更多
To determine the relationship between slabbing failure and the specimen height-to-width(H/W)ratio and to analyze the conditions,characteristics,and mechanism of slabbing failure in the laboratory,uniaxial compression ...To determine the relationship between slabbing failure and the specimen height-to-width(H/W)ratio and to analyze the conditions,characteristics,and mechanism of slabbing failure in the laboratory,uniaxial compression tests were conducted using six groups of granite specimens.The entire failure process was recorded using strain gauges and high-speed cameras.The initiation and propagation of fractures in specimens were identified by analyzing the monitoring results of stress,strain,and acoustic emission.The experimental results show that changes in the specimen H/W ratio can transform the macro failure mode.When the H/W ratio is reduced to 0.5,the macro failure mode is dominated by slabbing.Low load-bearing ability is observed in specimens with slabbing failure,and the slabbing fractures are approximately parallel to the loading direction.Moreover,the fracture propagation characteristics and acoustic emission signals of slabbing failure specimens show typical tensile failure characteristics,indicating that slabbing failure is essentially a special tensile failure.展开更多
The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sour...The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51927808,11972378 and 52174098).
文摘The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.
基金supported by the National Basic Research 973 Program of China (Grant 2014CB046905)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)+1 种基金the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)the innovation research project for academic graduate of Jiangsu Province (Grant KYLX16_0536)
文摘In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.
基金the financial s upport from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S451)。
文摘In this study,uniaxial and triaxial compression acoustic emission(AE)tests were implemented to investigate the AE effect and failure characteristics of sandstone under different confining pressures(σ3).The evolution of AE parameters in the rock failure process and fracture fractal dimension characteristics after failure were analyzed.The results revealed that the activity of the AE signal is strongly related toσ3.The evolution of the Ib value can be divided into the I-fluctuation,II-stability,and III-decrease stages.In the first stage,the Ib value of the AE was relatively high,and the AE energy was low.Then,the Ib value tended to be stable;however,the fluctuation amplitude decreased,and the AE energy rapidly increased.In the stage of decrease,the AE energy sharply increased before the load approached the peak value,and the Ib value significantly decreased and dropped to the lowest point before the peak value.Asσ3 increased,the rock’s failure mode changed from tensile failure to shear failure and became more coordinated.As the confining pressure increased,the shape dimension decreased,and the order degree of rock failure increased.The confining pressure exerted a certain control effect on the rock failure.
基金The authors are grateful for the support received from the National Natural Science Foundation of China(Grant No.51634007)the Graduate Innovation Fund project of Anhui University of Science and Technology(Grant No.2019CX1003).
文摘Sandstone samples with precracks of different dip angles were collected from a coal mine roof and subjected to uniaxial compression tests,and acoustic emission(AE)and scanning electron microscopy(SEM)were used to study how the crack dip angle affected the fracture mechanism.In the precracked sandstone samples,as the dip angle between the crack line and loading direction decreased,so did the peak stress and its completion time.The SEM observations revealed a fracture transition from tensile cleavage to shear slip,which was manifested by a microstructure change from aggregate to staggered.According to energy conversion,a decreased crack dip angle results in gradually decreasing total and dissipative peak energies,whose variation amplitudes at different stages are consistent with those of the peak stress of the samples.The decreased crack dip angle lowered the stress required to trigger the first appearance of AE energy peaks and ring-down counts,as well as shortening the period before the occurrence of the first AE peak signal.However,the AE energy and ring-down count during the failure stage after the stress peak increased gradually.A stepped increase was observed in the AE ring-down count curves,with each step corresponding to a jump in the stress-strain curve.From the characteristics of the AE signal of the fracture of a precracked rock sample,the occurrence of joints or faults in the rock mass can be reasonably inferred.This is expected to provide a new method and approach for predicting coal and rock dynamic disasters.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1910206,51874312,51861145403)Science and Technology Project of Inner Mongolia Autonomous Region(No.2019GG140)Major Scientific and Technological Innovation Project of Shandong Province(Nos.2019SDZY01,2019SDZY02).These sources of supports are gratefully acknowledged.
文摘As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.
基金Project(10525211, 50531060) supported by the National Natural Science Foundation of China
文摘The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using the Daubechies discrete wavelets, and then decomposed into different wavelet levels using the programs developed by the authors. Each level is examined for its specific frequency range. The ratio of energy in different levels to the total energy gives information on the failure modes (coating micro-failures and substrate micro-failures) associated with TBCs system.
基金Scientific Research Foundation of Guangdong Polytechnic,China(No.K2010201)
文摘Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.
基金supported by the Natural Science Foundation of Naval University of Engineering(under Grant No.HGDYDJJ13152)
文摘Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.
基金the National Natural Science Foundation of China(Nos.11972378,51904335,51927808)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0282).
文摘To determine the relationship between slabbing failure and the specimen height-to-width(H/W)ratio and to analyze the conditions,characteristics,and mechanism of slabbing failure in the laboratory,uniaxial compression tests were conducted using six groups of granite specimens.The entire failure process was recorded using strain gauges and high-speed cameras.The initiation and propagation of fractures in specimens were identified by analyzing the monitoring results of stress,strain,and acoustic emission.The experimental results show that changes in the specimen H/W ratio can transform the macro failure mode.When the H/W ratio is reduced to 0.5,the macro failure mode is dominated by slabbing.Low load-bearing ability is observed in specimens with slabbing failure,and the slabbing fractures are approximately parallel to the loading direction.Moreover,the fracture propagation characteristics and acoustic emission signals of slabbing failure specimens show typical tensile failure characteristics,indicating that slabbing failure is essentially a special tensile failure.
基金supported by the China Scholarship Council,the National Natural Science Foundation of China(61171197,61201307,61371045)the Innovation Funds of Harbin Institute of Technology(Grant IDGA18102011)the Promotive Research Fund for Excellent Young and Middle-Aged Scientisits of Shandong Province(BS2010DX001)
文摘The safety of rail is very important for the development of high speed railway, and it is necessary to investigate the features of inner cracks in rail. In order to obtain the features of Acoustic Emission (AE) sources of inner cracks in rail, AE sources with different types, depths and propagation distances are examined for crack in rail. The finite element method is utilized to model the rail with cracks and the results of experiment demonstrate the effectiveness of this model. Wavelet transform and Rayleigh-Lamb equations are utilized to extract the features of crack AE sources. The results illustrate that the intensity ratio among AE modes can identify the AE source types and the AE sources with different frequencies in rail. There are uniform AE mode features existing in the AE signals from AE sources in rail web, however AE signals from AE sources in rail head and rail base have the complex and unstable AE modes. Different AE source types have the different propagation features in rail. It is helpful to understand the rail cracks and detect the rail cracks based on the AE technique.