Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider...Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider the variable factors affecting each patient,resulting in discrepancies between the measured values and real health status.To solve the problems,we propose a new health monitoring system with physiological parameter measurement,correction,and feedback.The study collects clinical samples of the elderly to formulate regression equations and statistical models for analyzing the relationship between gender,age,measurement time,and physical signs.After multiple adjustments to measurements of physical signs,the correction algorithm compares the data with a standard value.The process significantly reduces the risk of misjudgment while matching users’health status more accurately.The application case of this paper proves the validity of the method for measuring and correcting heart rate results in the elderly and presents a specific correction procedure.Additionally,the correction algorithm provides a scientific basis for eliminating or modifying other influencing factors in future health monitoring studies.展开更多
It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems,because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder secti...It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems,because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder sections.Based on the Shanghai Bridge over the Yangtse River,the vortex-excited resonance of a 1∶60 scale sectional model was tested in a TJ-1wind tunnel,with or without vehicles at the attack angle of 0°,+3 and–3°,respectively.The conversion relationships between the resonant amplitudes of the sectional model and that of the prototype bridge were also established by mode shape correction.The result indicates that:1)for the bridge with vehicles,the vertical vortex-excited resonance is accompanied by torsion vibration with the same frequency,and vice versa,2)the amplitude of vortex-excited resonance of the bridge with vehicles is much larger than that of the bridge without vehicles,and 3)the lock-in wind speed of the vortex-excited resonance becomes smaller due to the disturbance of vehicles.It is obvious that vehicles bring about changes in the aerodynamic shape of the main girder.Therefore,the influence of vehicles on vortex-excited resonance performance of vehicle-bridge systems,in terms of both amplitude and mode,should not be ignored.展开更多
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple li...We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51804014).
文摘Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider the variable factors affecting each patient,resulting in discrepancies between the measured values and real health status.To solve the problems,we propose a new health monitoring system with physiological parameter measurement,correction,and feedback.The study collects clinical samples of the elderly to formulate regression equations and statistical models for analyzing the relationship between gender,age,measurement time,and physical signs.After multiple adjustments to measurements of physical signs,the correction algorithm compares the data with a standard value.The process significantly reduces the risk of misjudgment while matching users’health status more accurately.The application case of this paper proves the validity of the method for measuring and correcting heart rate results in the elderly and presents a specific correction procedure.Additionally,the correction algorithm provides a scientific basis for eliminating or modifying other influencing factors in future health monitoring studies.
文摘It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems,because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder sections.Based on the Shanghai Bridge over the Yangtse River,the vortex-excited resonance of a 1∶60 scale sectional model was tested in a TJ-1wind tunnel,with or without vehicles at the attack angle of 0°,+3 and–3°,respectively.The conversion relationships between the resonant amplitudes of the sectional model and that of the prototype bridge were also established by mode shape correction.The result indicates that:1)for the bridge with vehicles,the vertical vortex-excited resonance is accompanied by torsion vibration with the same frequency,and vice versa,2)the amplitude of vortex-excited resonance of the bridge with vehicles is much larger than that of the bridge without vehicles,and 3)the lock-in wind speed of the vortex-excited resonance becomes smaller due to the disturbance of vehicles.It is obvious that vehicles bring about changes in the aerodynamic shape of the main girder.Therefore,the influence of vehicles on vortex-excited resonance performance of vehicle-bridge systems,in terms of both amplitude and mode,should not be ignored.
基金supported by the National Natural Science Foundation of China(Grant Nos.61675028,and 11674033)the Fundamental Research Funds for the Central Universities(Grant No.2015KJJCA01)and the National High Technology Research and Development Program of China(Grant No.2013AA122902)
文摘We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.