期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Study on Health Monitoring Systems Based on Correction Mode
1
作者 ZHU Tianyang ZHANG Yajun +1 位作者 ZHOU Junliang ZHOU Aotu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期325-332,共8页
Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider... Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider the variable factors affecting each patient,resulting in discrepancies between the measured values and real health status.To solve the problems,we propose a new health monitoring system with physiological parameter measurement,correction,and feedback.The study collects clinical samples of the elderly to formulate regression equations and statistical models for analyzing the relationship between gender,age,measurement time,and physical signs.After multiple adjustments to measurements of physical signs,the correction algorithm compares the data with a standard value.The process significantly reduces the risk of misjudgment while matching users’health status more accurately.The application case of this paper proves the validity of the method for measuring and correcting heart rate results in the elderly and presents a specific correction procedure.Additionally,the correction algorithm provides a scientific basis for eliminating or modifying other influencing factors in future health monitoring studies. 展开更多
关键词 health monitoring correction mode algorithm design heart rate
下载PDF
Sectional model test study on vortex-excited resonance of vehicle-bridge system of Shanghai Bridge over Yangtse River 被引量:1
2
作者 Li ZHOU Yaojun GE 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第1期67-72,共6页
It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems,because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder secti... It is necessary to study how vehicles influence the vortex-excited resonance of vehicle-bridge systems,because lock-in wind speed is low and vortex-excited resonance is sensitive to any change in the main girder sections.Based on the Shanghai Bridge over the Yangtse River,the vortex-excited resonance of a 1∶60 scale sectional model was tested in a TJ-1wind tunnel,with or without vehicles at the attack angle of 0°,+3 and–3°,respectively.The conversion relationships between the resonant amplitudes of the sectional model and that of the prototype bridge were also established by mode shape correction.The result indicates that:1)for the bridge with vehicles,the vertical vortex-excited resonance is accompanied by torsion vibration with the same frequency,and vice versa,2)the amplitude of vortex-excited resonance of the bridge with vehicles is much larger than that of the bridge without vehicles,and 3)the lock-in wind speed of the vortex-excited resonance becomes smaller due to the disturbance of vehicles.It is obvious that vehicles bring about changes in the aerodynamic shape of the main girder.Therefore,the influence of vehicles on vortex-excited resonance performance of vehicle-bridge systems,in terms of both amplitude and mode,should not be ignored. 展开更多
关键词 vehicle-bridge system sectional mode vortexexcited resonance wind tunnel test mode shape correction
原文传递
Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements
3
作者 YuXiao Jiang PengLiang Guo +4 位作者 ChengYan Gao HaiBo Wang Faris Alzahrani Aatef Hobiny FuGuo Deng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第12期12-18,共7页
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple li... We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom. 展开更多
关键词 photon transmission error correction collective-noise channel spatial-polarization modes quantum communication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部