We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges f...We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 rim, eight sam- ples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimen- tally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator.展开更多
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar...A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.展开更多
We experimentally demonstrate a femtosecond optical parametric oscillator (OPO) synchronously pmnped by a home-made solid-state mode-locking Yb:YCOB laser, which is capable of laser pulse as short as 102 fs and ave...We experimentally demonstrate a femtosecond optical parametric oscillator (OPO) synchronously pmnped by a home-made solid-state mode-locking Yb:YCOB laser, which is capable of laser pulse as short as 102 fs and average power of 620 mW at the central wavelength of 1052 nm. By using a periodically poled lithium niobate with tuning of the grating periods from 28.5 to 31.5μm as the nonlinear gain crystal, tunable femtosecond pulses from 1444 to 1683 nm are realized by conveniently adjusting the OPO cavity length with 76.8 MHz repetition rate. The maximum average output power is 152 mW at 1568 nm, corresponding to an idler power of 75 mW at 3197 nm as well as 36.6% total extraction efficiency.展开更多
We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop m...We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop mirrors.By employing 100-m polarization-maintaining fiber(PMF)in the nonlinear loop,the fundamental repetition rate reaches 1.84 MHz and no practical limitation is found to further decrease the repetition rate.The filter used in the long loop not only suppresses Kelly sidebands of the solitons,but also eliminates the amplified spontaneous emission which exists widely in lowrepetition-rate ultrafast fiber lasers.The bandwidth of the filter is optimized by using a numerical model.The laser emits approximately 3-ps pulses with an energy of 17.4 p J,which is further boosted to 1.5μJ by using a fiber amplifier.展开更多
为了实现内腔型光参量振荡器(OPO)的调Q锁模脉冲输出,通过设计并匹配OPO谐振腔和基频激光腔的腔长,满足了同步泵浦条件,最终在实验上得到了信号光的调Q锁模输出;在实验中,采用氙灯泵浦Nd:YAG作为基频激光,以KTP晶体为非线性转换介质,采...为了实现内腔型光参量振荡器(OPO)的调Q锁模脉冲输出,通过设计并匹配OPO谐振腔和基频激光腔的腔长,满足了同步泵浦条件,最终在实验上得到了信号光的调Q锁模输出;在实验中,采用氙灯泵浦Nd:YAG作为基频激光,以KTP晶体为非线性转换介质,采用电光开关作为调Q手段,测量了OPO的近红外信号光的输出波形、输出能量、光谱构成等输出特性。在泵浦能量12.8 J、调制频率20 k Hz时,得到了锁模深度为100%的信号光输出,并发现信号光锁模脉冲重复率依赖于基频激光;得到了调Q锁模信号光输出能量随泵浦能量、电光调制频率的变化关系。展开更多
基金supported by the National Basic Research Program of China(Grant No.2010CB327606)the National Nature Science Foundation of China(Grant No.61108007)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China
文摘We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 rim, eight sam- ples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimen- tally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator.
基金Project supported by the Initiative Research Program of State Key Laboratory of Precision Measurement Technology and Instruments,Chinathe National Natural Science Foundation of China(Grant No.51527901)
文摘A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.
基金partly supported by the National Natural Science Foundation of China(No.61205130)the National Key Basic Research Program of China(No.2013CB922402)the National Key Scientific Instruments Development Program of China(No.2012YQ120047)
文摘We experimentally demonstrate a femtosecond optical parametric oscillator (OPO) synchronously pmnped by a home-made solid-state mode-locking Yb:YCOB laser, which is capable of laser pulse as short as 102 fs and average power of 620 mW at the central wavelength of 1052 nm. By using a periodically poled lithium niobate with tuning of the grating periods from 28.5 to 31.5μm as the nonlinear gain crystal, tunable femtosecond pulses from 1444 to 1683 nm are realized by conveniently adjusting the OPO cavity length with 76.8 MHz repetition rate. The maximum average output power is 152 mW at 1568 nm, corresponding to an idler power of 75 mW at 3197 nm as well as 36.6% total extraction efficiency.
基金supported by the National Key Research and Development Program (No. 2018YFB0407100)National Natural Science Foundation of China (Nos. 11434005 and 11621404)Key Project of Shanghai Education Commission (No. 2017-01-07-00-05-E00021)
文摘We report on environmentally stable long-cavity ultrashort erbium-doped fiber lasers,which self-start mode-locking at quite low thresholds by using spectrally filtered and phase-biased nonlinear amplifying long-loop mirrors.By employing 100-m polarization-maintaining fiber(PMF)in the nonlinear loop,the fundamental repetition rate reaches 1.84 MHz and no practical limitation is found to further decrease the repetition rate.The filter used in the long loop not only suppresses Kelly sidebands of the solitons,but also eliminates the amplified spontaneous emission which exists widely in lowrepetition-rate ultrafast fiber lasers.The bandwidth of the filter is optimized by using a numerical model.The laser emits approximately 3-ps pulses with an energy of 17.4 p J,which is further boosted to 1.5μJ by using a fiber amplifier.
文摘为了实现内腔型光参量振荡器(OPO)的调Q锁模脉冲输出,通过设计并匹配OPO谐振腔和基频激光腔的腔长,满足了同步泵浦条件,最终在实验上得到了信号光的调Q锁模输出;在实验中,采用氙灯泵浦Nd:YAG作为基频激光,以KTP晶体为非线性转换介质,采用电光开关作为调Q手段,测量了OPO的近红外信号光的输出波形、输出能量、光谱构成等输出特性。在泵浦能量12.8 J、调制频率20 k Hz时,得到了锁模深度为100%的信号光输出,并发现信号光锁模脉冲重复率依赖于基频激光;得到了调Q锁模信号光输出能量随泵浦能量、电光调制频率的变化关系。