To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional C...To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional CFD technology is used to simulate the influence of mode selection valve rotation on the engine flow field,which improves the accuracy of the model.Furthermore,the constant flow control plan is proposed in the modal transition process to reduce the engine installed drag.The constant flow control plan adopts the augmentation linear quadratic regulator control method.Simulation results indicate that the control method is able to effectively control the bypass ratio and demand flow of the variable cycle engine,and make the engine transform smoothly,which ensures the stable operation of the engine in modal transition and the constant demand flow of the engine.展开更多
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅲ-0009-0053)the Advanced Jet Propulsion Creativity Center, China (No. HKCX2020020022)
文摘To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional CFD technology is used to simulate the influence of mode selection valve rotation on the engine flow field,which improves the accuracy of the model.Furthermore,the constant flow control plan is proposed in the modal transition process to reduce the engine installed drag.The constant flow control plan adopts the augmentation linear quadratic regulator control method.Simulation results indicate that the control method is able to effectively control the bypass ratio and demand flow of the variable cycle engine,and make the engine transform smoothly,which ensures the stable operation of the engine in modal transition and the constant demand flow of the engine.