To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the si...To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.展开更多
As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s disp...As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s displacement signal affects the mode-switching control,when failure occurs at the angle-displacement sensor,the mode-shifting quality is likely to drop greatly,even possibly leading to shift failure.To address the angle-displacement sensor failure and improve the reliability of the shift control,an adaptive fault-tolerant control method is proposed and verified.First,the effect of the output signal of the angle-displacement sensor in the mode-switching control process is analyzed.Then,an adaptive mode-switching fault-tolerant control method is designed based on the Kalman filter and fuzzy theory.Finally,the feasibility of the control effect is verified through simulations and vehicle experiments.The results indicate that the proposed method can effectively eliminate the signal noise of the angle-displacement sensor and successfully switch the modes when the sensor fails.It provides a reference for ensuring the working quality of similar electric drive systems under sensor failures.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52377119 and U22B20109.
文摘To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51775478)Natural Science Foundation of Hebei Province of China(Grant Nos:E2016203173,E2020203078,E2020203174).
文摘As a new drive system for electric vehicles,the dual-mode coupling drive system can automatically switch between centralized and distributed drive modes and realize two-speed gear shifting.Because the actuator’s displacement signal affects the mode-switching control,when failure occurs at the angle-displacement sensor,the mode-shifting quality is likely to drop greatly,even possibly leading to shift failure.To address the angle-displacement sensor failure and improve the reliability of the shift control,an adaptive fault-tolerant control method is proposed and verified.First,the effect of the output signal of the angle-displacement sensor in the mode-switching control process is analyzed.Then,an adaptive mode-switching fault-tolerant control method is designed based on the Kalman filter and fuzzy theory.Finally,the feasibility of the control effect is verified through simulations and vehicle experiments.The results indicate that the proposed method can effectively eliminate the signal noise of the angle-displacement sensor and successfully switch the modes when the sensor fails.It provides a reference for ensuring the working quality of similar electric drive systems under sensor failures.