To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the u...To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.展开更多
A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension...A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.展开更多
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base...In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.展开更多
A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free,...A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.展开更多
Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete t...Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.展开更多
A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-d...A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.展开更多
基金National Natural Science Foundation of China(No.51567018)
文摘To eliminate the node traction coupling during wind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function compensation. Based on the universal model theory,the fuzzy model free adaptive control( FMFAC) algorithm is designed by configuring the spot static testing experiences as compensation function F( ·). Then the algorithm implementation process is provided and its quick convergence is proved. Using software to establish static load coupling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing. The results show that the adaptive decoupling ability of FMFAC is better. The traction of four load points can stay steady and change coordinately. Process error is not over ± 6 k N. The error rate is lower than 1% in special phase.This algorithm effectively eliminates the traction coupling of the static testing process,and makes wind turbine blade testing steadily.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102007)the Fundamental Research Fund for the Central Universities(Grant No.YWF-14-YHXY-012)
文摘A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.
基金Supported by National Natural Science Foundation of China(61873006,61673053)National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.
文摘A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear discrete-time systems, which is especially useful for nonlinear systems with vaguely known dynamics. This design is model-free, and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm. The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.
基金Supported by National Natural science Foundation-of P.R.Chlna (60474038, 60774022), Specialized Research Fund for the Doctoral Program of Higher Educatlon(20060004002)
基金supported by University of Science and Technology Liaoning,National Financial Security and System Equipment Engineering Research Center(No.USTLKFGJ201502)
文摘Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.
基金supported by Key Programs for Science and Technology Development of Henan Province(No.102102210197)the Opening Project of Key Laboratory of Mine Informatization,Henan Polytechnic University and the Doctoral Foundation of Henan Polytechnic University(No.B2010-23)
文摘A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.