期刊文献+
共找到958篇文章
< 1 2 48 >
每页显示 20 50 100
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
1
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(mpc) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
2
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(mpc)
下载PDF
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
3
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 Autonomous driving model predictive control(mpc) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Model Predictive Control for Cascaded H-Bridge PV Inverter with Capacitor Voltage Balance
4
作者 Xinwei Wei Wanyu Tao +4 位作者 Xunbo Fu Xiufeng Hua Zhi Zhang Xiaodan Zhao Chen Qin 《Journal of Electronic Research and Application》 2024年第2期79-85,共7页
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc... We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules. 展开更多
关键词 model predictive control(mpc) Photovoltaic system Cascaded H-bridge(CHB)inverter Capacitor voltage balance
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
5
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm Nonlinear model predictive control Neural network modeling
下载PDF
An Efficient Constrained Model Predictive Control Algorithm Based on Approximate Computation 被引量:1
6
作者 Du Xiaoning, Xi Yugeng & Li Shaoyuan Institute of Automation, Shanghai Jiaotong University, Shanghai 200030, P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第1期42-47,共6页
The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs.... The on line computational burden related to model predictive control (MPC) of large scale constrained systems hampers its real time applications and limits it to slow dynamic process with moderate number of inputs. To avoid this, an efficient and fast algorithm based on aggregation optimization is proposed in this paper. It only optimizes the current control action at time instant k , while other future control sequences in the optimization horizon are approximated off line by the linear feedback control sequence, so the on line optimization can be converted into a low dimensional quadratic programming problem. Input constraints can be well handled in this scheme. The comparable performance is achieved with existing standard model predictive control algorithm. Simulation results well demonstrate its effectiveness. 展开更多
关键词 model predictive control (mpc) Receding horizon control (RHC) Approximate computation.
下载PDF
Application of Dynamic Programming Algorithm Based on Model Predictive Control in Hybrid Electric Vehicle Control Strategy 被引量:1
7
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2020年第2期81-87,共7页
A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el... A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified. 展开更多
关键词 State of charge model predictive control dynamic programming algorithm OPTIMIZATION
下载PDF
Predictive Control Algorithm for Urban Rail Train Brake Control System Based on T-S Fuzzy Model
8
作者 Xiaokan Wang Qiong Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1859-1867,共9页
Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail... Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort. 展开更多
关键词 predictive control T-S fuzzy model urban rail train algorithm
下载PDF
Nonlinear Model Algorithmic Control of a pH Neutralization Process 被引量:11
9
作者 邹志云 于蒙 +4 位作者 王志甄 刘兴红 郭宇晴 张风波 郭宁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期395-400,共6页
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea... Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors. 展开更多
关键词 model algorithmic control nonlinear model predictive control Hammerstein model pH neutralization process control simulation
下载PDF
Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model 被引量:7
10
作者 SU Cheng-li WANG Shu-qing 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1723-1732,共10页
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre... An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible. 展开更多
关键词 Uncertain Takagi-Sugeno fuzzy model TIME-DELAY model predictive control mpc Linear matrix inequalities(LMIs) Robustness
下载PDF
Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control 被引量:5
11
作者 Xiao-Bing Hu Wen-Hua Chen 《International Journal of Automation and computing》 EI 2007年第2期195-202,共8页
This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC... This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods, this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI) and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study. 展开更多
关键词 model predictive control mpc stability region terminal region linear differential inclusion (LDI) linear matrix inequality (LMI).
下载PDF
Robust model predictive control for continuous uncertain systems with state delay 被引量:4
12
作者 Chunyan HAN Xiaohua LIU Huanshui ZHANG 《控制理论与应用(英文版)》 EI 2008年第2期189-194,共6页
This paper is concerned with robust model predictive control for linear continuous uncertain systems with state delay and control constraints, A piecewise constant control sequence is calculated by minimizing the uppe... This paper is concerned with robust model predictive control for linear continuous uncertain systems with state delay and control constraints, A piecewise constant control sequence is calculated by minimizing the upper-bound of the infinite horizon quadratic cost function, At each sampling time, the sufficient conditions for the existence of the model predictive control are derived, and expressed as a set of linear matrix inequalities. The robust stability of the closed-loop svstems is guaranteed bv the proposed design method. A numerical example is given to illustrate the main results. 展开更多
关键词 model predictive control mpc Robust control Linear matrix inequality (LMI) Time-delay systems
下载PDF
Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints 被引量:3
13
作者 李大字 贾元昕 +1 位作者 李全善 靳其兵 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期448-458,共11页
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ... This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC. 展开更多
关键词 model predictive control system identification constrained systems Hammerstein model polymerization reactor artificial bee colony algorithm
下载PDF
Finite-Control-Set Model Predictive Control of Permanent Magnet Synchronous Motor Drive Systems——An Overview 被引量:6
14
作者 Teng Li Xiaodong Sun +3 位作者 Gang Lei Zebin Yang Youguang Guo Jianguo Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2087-2105,共19页
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p... Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted. 展开更多
关键词 Computational burden finite control set(FCS) model predictive control(mpc) permanent magnet synchronous motor(PMSM) robust operation switching frequency
下载PDF
GA-Based Model Predictive Control of Semi-Active Landing Gear 被引量:3
15
作者 WU Dong-su GU Hong-bin LIU Hui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期47-54,共8页
Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Pred... Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller. 展开更多
关键词 landing gear semi-active control nonlinear model predictive control impact load genetic algorithm
下载PDF
Power Maximization of A Point Absorber Wave Energy Converter Using Improved Model Predictive Control 被引量:3
16
作者 Farideh MILANI Reihaneh Kardehi MOGHADDAM 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期510-516,共7页
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular wa... This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter. 展开更多
关键词 wave energy converter Kalman filter model predictive control imperialist competitive algorithm
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
17
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(mpc) optimal control plug-in hybrid electric vehicle(PHEV)
下载PDF
Distributed Model Predictive Control with Actuator Saturation for Markovian Jump Linear System 被引量:2
18
作者 Yan Song Haifeng Lou Shuai Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第4期374-381,共8页
This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system... This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system matrices. The global system is decomposed into several subsystems which coordinate with each other. A set of distributed controllers is designed by solving a min-max optimization problem in terms of the solutions of linear matrix inequalities (LMIs). An iterative algorithm is developed to achieve the online computation. Finally, a simulation example is employed to show the effectiveness of the proposed algorithm. © 2014 Chinese Association of Automation. 展开更多
关键词 Actuators algorithmS Iterative methods Linear matrix inequalities Linear systems Markov processes Matrix algebra model predictive control Optimization predictive control systems Robustness (control systems)
下载PDF
Design of Robust Model Predictive Control Based on Multi-step Control Set 被引量:14
19
作者 LI De-Wei XI Yu-Geng 《自动化学报》 EI CSCD 北大核心 2009年第4期433-437,共5页
关键词 多步控制集 鲁棒模型 预先控制 反馈控制
下载PDF
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
20
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control mpc).
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部