This research aims to improve the forecasting precision of electric quantity. It is discovered that the total electricity consumption considerably increased during the Spring Festival by the analysis of the electric q...This research aims to improve the forecasting precision of electric quantity. It is discovered that the total electricity consumption considerably increased during the Spring Festival by the analysis of the electric quantity time series from 2002 to 2007 in Shandong province. The festival factor is ascertained to be one of the important seasonal factors affecting the electric quantity fluctuations, and the multiplication model for forecasting is improved by introducing corresponding variables and parameters. The computational results indicate that the average relative error of the new model decreases from 4.31% to 1.93% and the maximum relative error from 14.05% to 6.52% compared with those of the model when the festival factor is not considered. It shows that introducing the festival factor into the multiplication model for electric quantity forecasting evidently improves the precision.展开更多
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ...Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-c...Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-cesses in sandstone aquifers.These four parameters reflect the characteristics of pore structure of sandstone from different perspectives,and the traditional empirical formulas cannot make accurate predictions of them due to their complexity and heterogeneity.In this paper,eleven types of sandstone CT images were firstly segmented into numerous subsample images,the porosity,tortuosity,SSA,and permeability of the subsamples were calculated,and the dataset was established.The 3D convolutional neural network(CNN)models were subse-quently established and trained to predict the key reactive transport parameters based on subsample CT images of sandstones.The results demonstrated that the 3D CNN model with multiple outputs exhibited excellent prediction ability for the four parameters compared to the traditional empirical formulas.In particular,for the prediction of tortuosity and permeability,the 3D CNN model with multiple outputs even showed slightly better prediction ability than its single-output variant model.Additionally,it demonstrated good generalization per-formance on sandstone CT images not included in the training dataset.The study showed that the 3D CNN model with multiple outputs has the advantages of simplifying operation and saving computational resources,which has the prospect of popularization and application.展开更多
The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilib...The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilibrium points, and periodic solution was reported by using an iteration model of dislocation multiplication. An unusual behavior of Lyapunov exponent and Feigenbaum exponent which respond to the geometric convergence of orbit from bifurcation to chaos was shown by dislocation velocity exponent m and there is a distinction on the tendency of convergence for the dislocation multiplication model when it was compared with logistic map. It is reasonable for the difference to be analyzed from the materials viewpoint. (Edited author abstract) 9 Refs.展开更多
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GP...In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
The aim of this study was to assay the polyphenols,flavonoid,polyphenol oxidase and phenylalnine ammonialyase which were relative to the anthocyanins synthesis of purple corn. The optimization of multiple linear regre...The aim of this study was to assay the polyphenols,flavonoid,polyphenol oxidase and phenylalnine ammonialyase which were relative to the anthocyanins synthesis of purple corn. The optimization of multiple linear regression model of anthocyanins synthesis was y=4.383 86-0.205 45x1+5.479 638x2+0.195 575x4. According to standard partial regression coefficient testing,the result indicated that polyphenols content was negatively correlated with anthocyanins and the relative influence to anthocyanins synthesis was-42.7%; flavonoid content and activity of polyphenol oxidase were positively correlated with anthocyanins of purple corn and the relative influence to anthocyanins synthesis were 71.45% and 73.32% respectively. There was no positive correlation between the activity of phenylalnine ammonialyase and anthocyanins of purple corn. The establishment of multiple linear regression model of anthocyanins synthesis was to provide theory foundation of producing anthocyanins in laboratory.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco...Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.展开更多
In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intent...In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity.展开更多
Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filte...Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method.展开更多
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ...Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm ...According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.展开更多
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M...It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.展开更多
The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
Interacting multiple models is the hotspot in the research of maneuvering target models at present. A hierarchical idea is introduced into IMM algorithm. The method is that the whole models are organized as two levels...Interacting multiple models is the hotspot in the research of maneuvering target models at present. A hierarchical idea is introduced into IMM algorithm. The method is that the whole models are organized as two levels to co-work, and each cell model is an improved "current" statistical model. In the improved model, a kind of nonlinear fuzzy membership function is presented to get over the limitation of original model, which can not track weak maneuvering target precisely. At last, simulation experiments prove the efficient of the novel algorithm compared to interacting multiple model and hierarchical interacting multiple model based original "current" statistical model in tracking precision.展开更多
The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not o...The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.展开更多
基金The Forecasting Research Base of Chinese Academy of Sciences in Xi an Jiaotong University,the National Natural Science Foundation of China (No.70773091)
文摘This research aims to improve the forecasting precision of electric quantity. It is discovered that the total electricity consumption considerably increased during the Spring Festival by the analysis of the electric quantity time series from 2002 to 2007 in Shandong province. The festival factor is ascertained to be one of the important seasonal factors affecting the electric quantity fluctuations, and the multiplication model for forecasting is improved by introducing corresponding variables and parameters. The computational results indicate that the average relative error of the new model decreases from 4.31% to 1.93% and the maximum relative error from 14.05% to 6.52% compared with those of the model when the festival factor is not considered. It shows that introducing the festival factor into the multiplication model for electric quantity forecasting evidently improves the precision.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-Major Project-Research on Tight Oil-Shale Oil Reservoir Engineering Methods and Key Technologies in Ordos Basin(No.ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015)。
文摘Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金supported by the National Natural Science Foundation of China (12105139 and 42277264)National Key Research and Development Program of China (2021YFC2902104)Education Department of Hunan Province (21B0446).
文摘Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-cesses in sandstone aquifers.These four parameters reflect the characteristics of pore structure of sandstone from different perspectives,and the traditional empirical formulas cannot make accurate predictions of them due to their complexity and heterogeneity.In this paper,eleven types of sandstone CT images were firstly segmented into numerous subsample images,the porosity,tortuosity,SSA,and permeability of the subsamples were calculated,and the dataset was established.The 3D convolutional neural network(CNN)models were subse-quently established and trained to predict the key reactive transport parameters based on subsample CT images of sandstones.The results demonstrated that the 3D CNN model with multiple outputs exhibited excellent prediction ability for the four parameters compared to the traditional empirical formulas.In particular,for the prediction of tortuosity and permeability,the 3D CNN model with multiple outputs even showed slightly better prediction ability than its single-output variant model.Additionally,it demonstrated good generalization per-formance on sandstone CT images not included in the training dataset.The study showed that the 3D CNN model with multiple outputs has the advantages of simplifying operation and saving computational resources,which has the prospect of popularization and application.
文摘The chaotic behaviour of dislocation multiplication process was investigated. The change of Lyapunov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilibrium points, and periodic solution was reported by using an iteration model of dislocation multiplication. An unusual behavior of Lyapunov exponent and Feigenbaum exponent which respond to the geometric convergence of orbit from bifurcation to chaos was shown by dislocation velocity exponent m and there is a distinction on the tendency of convergence for the dislocation multiplication model when it was compared with logistic map. It is reasonable for the difference to be analyzed from the materials viewpoint. (Edited author abstract) 9 Refs.
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
基金Project(20120022120011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2652012062)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
文摘The aim of this study was to assay the polyphenols,flavonoid,polyphenol oxidase and phenylalnine ammonialyase which were relative to the anthocyanins synthesis of purple corn. The optimization of multiple linear regression model of anthocyanins synthesis was y=4.383 86-0.205 45x1+5.479 638x2+0.195 575x4. According to standard partial regression coefficient testing,the result indicated that polyphenols content was negatively correlated with anthocyanins and the relative influence to anthocyanins synthesis was-42.7%; flavonoid content and activity of polyphenol oxidase were positively correlated with anthocyanins of purple corn and the relative influence to anthocyanins synthesis were 71.45% and 73.32% respectively. There was no positive correlation between the activity of phenylalnine ammonialyase and anthocyanins of purple corn. The establishment of multiple linear regression model of anthocyanins synthesis was to provide theory foundation of producing anthocyanins in laboratory.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
基金Supported by the National High Technology Research and Development Program of China (2006AA040309)National BasicResearch Program of China (2007CB714000)
文摘Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.
基金Project supported by China Postdoctoral Science Foundation (No.20060400313)partly by Zhejiang Postdoctoral Science Founda-tion of China (No. 2006-bsh-25)
文摘In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity.
文摘Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method.
基金funded by the National Natural Science Foundation of China(32072764, 31702121)the 2115 Talent Development Program of China Agricultural UniversityNational Key Research and Development Program of China (2019YFD1002605)
文摘Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
基金Supported by the National Natural Science Foundation of China (No.40067116), the Research Development Foundation of Dalian Naval Academy (No.K200821).
文摘According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.
基金supported by the Natural Science Foundation of Anhui Province(1708085QF149)。
文摘It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.
文摘Interacting multiple models is the hotspot in the research of maneuvering target models at present. A hierarchical idea is introduced into IMM algorithm. The method is that the whole models are organized as two levels to co-work, and each cell model is an improved "current" statistical model. In the improved model, a kind of nonlinear fuzzy membership function is presented to get over the limitation of original model, which can not track weak maneuvering target precisely. At last, simulation experiments prove the efficient of the novel algorithm compared to interacting multiple model and hierarchical interacting multiple model based original "current" statistical model in tracking precision.
文摘The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.