A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimiz...A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs.展开更多
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot poli...The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.展开更多
基金the National Natural Science Foundation of China (No.50579007)
文摘A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs.
基金supported by National Natural Science Foundation of China(Grant No.51005184)National Science and Technology Major Project of Ministry of Science and Technology of China(Grant No.2009ZX04014-053)
文摘The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.