期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
MODELING, VALIDATION AND OPTIMAL DESIGN OF THE CLAMPING FORCE CONTROL VALVE USED IN CONTINUOUSLY VARIABLE TRANSMISSION 被引量:4
1
作者 ZHOU Yunshan LIU Jin'gang +1 位作者 CAIYuanchun ZOU Naiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期51-55,共5页
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy... Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece. 展开更多
关键词 Dynamic modeling Optimal design Genetic algorithm Clamping force control valve Continuously variable transmission (CVT)
下载PDF
Design optimization of transonic compressor stage using CFD and response surface model
2
作者 王祥锋 王松涛 韩万金 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期112-118,共7页
In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface mo... In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver(Numeca Fine). Data points for response evaluations were selected by improved distributed hypercube sampling (IHS) and the 3-D Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. To maximize the adiabatic efficiency, the genetic algorithm was applied to the response surface model to perform global optimization to achieve the optimum design of NASA Stage 35. An optimum leading edge line was found, which produced a new 3-D rotor blade combined with sweep and lean, and a new stator one with skew. It is concluded that the proposed strategy can provide a reliable method for design optimization of turbomachinery blades at reasonable computing cost. 展开更多
关键词 response surface models genetic algorithm transonic compressor optimization design numerical simulation
下载PDF
Spatial batch optimal design based on self-learning Gaussian process models for LPCVD processes 被引量:1
3
作者 孙培 谢磊 陈荣辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1958-1964,共7页
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ... Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process. 展开更多
关键词 Batchwise LPCVD Transport processes Spatial distribution Gaussian process model Optimal design
下载PDF
PARTICLE SWARM OPTIMIZATION BASED ON PYRAMID MODEL FOR SATELLITE MODULE LAYOUT 被引量:1
4
作者 Zhang Bao Teng Hongfei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期530-536,共7页
To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against t... To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio. 展开更多
关键词 Particle swarm optimization Pyramid model Layout design Satellite module
下载PDF
An optimization method for metamorphic mechanisms based on multidisciplinary design optimization 被引量:8
5
作者 Zhang Wuxiang Wu Teng Ding Xilun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1612-1618,共7页
The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its mult... The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models. 展开更多
关键词 Configuration Mechanism Metamorphic mechanisms Method Multidisciplinary design optimization optimization model
原文传递
Multi-objective robust design optimization of a novel negative Poisson's ratio bumper system
6
作者 ZHOU Guan ZHAO WanZhong +2 位作者 MA ZhengDong WANG ChunYan LI YuFang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1103-1110,共8页
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b... Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method. 展开更多
关键词 negative Poisson's ratio structure bumper system multi-objective robust design optimization parameterized model crashworthiness
原文传递
Rotorcraft flight endurance estimation based on a new battery discharge model 被引量:5
7
作者 Feng CHENG Hua WANG Pin CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1561-1569,共9页
To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A... To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts. 展开更多
关键词 Kriging model Orthogonal experimental design Robust optimization Rotorcraft endurance Sequential method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部