With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and g...This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje...The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.展开更多
Several economists agree to say that the need for adjustment was essential for African countries over the decade of the 80’s. The econometric analysis of a sample of 28 sub-Saharan African countries, from variables r...Several economists agree to say that the need for adjustment was essential for African countries over the decade of the 80’s. The econometric analysis of a sample of 28 sub-Saharan African countries, from variables regarded as “representatives” for the adjustment objectives, proves that this assertion cannot be completely rejected.展开更多
Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specif...Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specific gene regulatory relationships.In a naive approach,existing GRN inference algorithms can be used to separately estimate two GRNs under different conditions and identify the differences between them.However,in this way,the similarities between the pairwise GRNs are not taken into account.Several joint differential analysis algorithms have been proposed recently,which were proved to outperform the naive approach apparently.In this paper,we model the GRNs under different conditions with structural equation models(SEMs)to integrate gene expression data and genetic perturbations,and re-parameterize the pairwise SEMs to form an integrated model that incorporates the differential structure.Then,a Bayesian inference method is used to make joint differential analysis by solving the integrated model.We evaluated the performance of the proposed re-parametrization-based Bayesian differential analysis(ReBDA)algorithm by running simulations on synthetic data with different settings.The performance of the ReBDA algorithm was demonstrated better than another state-of-the-art joint differential analysis algorithm for SEMs ReDNet obviously.In the end,the ReBDA algorithm was applied to make differential analysis on a real human lung gene data set to illustrate its applicability and practicability.展开更多
The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual f...The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.展开更多
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk...Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.展开更多
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sampl...A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ1 and σ2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may con-tain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.展开更多
Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of cruc...Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of crucial importance in the credit derivatives market. In this work, we adapt Merton’s [1] original works on credit risk, consumption and portfolio rules to model an individual wealth scenario, and apply it to compute this individual default probabilities. Using our model, we also compute the time depending individual default intensities, recovery rates, hazard rate and risk premiums. Hence, as a straight-forward application, our model can be used as novel way to measure the credit risk of individuals.展开更多
Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and...Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.展开更多
Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying princi...Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermome...The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermomechanical simulator,with mathematical models established for flow stress during hot deformation.The results show that the deformation resistance decreases with the increase of temperature and is in power function relationship with the temperature.Meanwhile,it increases with the increase of strain rate and is in log-log relationship with the strain rate.The dynamic recrystallization activation energy of tested steel was determined to be about 329.55 kJ/mol,295.31 kJ/mol at peak and steady states.The prediction models developed for flow stress indicated that they are in good agreement with experimental results.展开更多
In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model...In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model working for a finer time-step (daily) while aggregating the desired outputs. The finest time-steps are considered, apriori, as the most performant. By passing from one time-step to another, and in order to work in the desired time-step (annual) and calculate the potential gains or loss, this article proposed a comparative study between the aggregation method of outputs of a modal working at a finer time step, and a method in which we use a conceived model from the beginning. To ensure this comparative and empirical approach, the choice has been focused on (GRs) models to a daily time-step (GR4J), monthly time step (GR2M) and annual time step (GR1A). The modelling platform used is the same for all three models taking into account the specificities of each one: the same data sample, the same optimization method, and the same function criterion are used during the construction of these models. Due to the moving between these time steps, results show that the best way to simulate the annual flow is to use an appropriate and designed modal initially conceived to this time step. Indeed, this simulation seems to be less effective when using a model at a finer time-step (daily).展开更多
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
文摘This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
文摘The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.
文摘Several economists agree to say that the need for adjustment was essential for African countries over the decade of the 80’s. The econometric analysis of a sample of 28 sub-Saharan African countries, from variables regarded as “representatives” for the adjustment objectives, proves that this assertion cannot be completely rejected.
基金supported by grants from National Natural Science Foundation of China(Nos.61502198,61572226,61472161,61876069)。
文摘Under different conditions,gene regulatory networks(GRNs)of the same gene set could be similar but different.The differential analysis of GRNs under different conditions is important for understanding condition-specific gene regulatory relationships.In a naive approach,existing GRN inference algorithms can be used to separately estimate two GRNs under different conditions and identify the differences between them.However,in this way,the similarities between the pairwise GRNs are not taken into account.Several joint differential analysis algorithms have been proposed recently,which were proved to outperform the naive approach apparently.In this paper,we model the GRNs under different conditions with structural equation models(SEMs)to integrate gene expression data and genetic perturbations,and re-parameterize the pairwise SEMs to form an integrated model that incorporates the differential structure.Then,a Bayesian inference method is used to make joint differential analysis by solving the integrated model.We evaluated the performance of the proposed re-parametrization-based Bayesian differential analysis(ReBDA)algorithm by running simulations on synthetic data with different settings.The performance of the ReBDA algorithm was demonstrated better than another state-of-the-art joint differential analysis algorithm for SEMs ReDNet obviously.In the end,the ReBDA algorithm was applied to make differential analysis on a real human lung gene data set to illustrate its applicability and practicability.
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
基金the National Natural Science Foundation of China (Project No.40372072)
文摘The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.
基金supported by Fund of National Science & Technology monumental projects under Grants No. 2012ZX03005012, 2011ZX03005-004-03, 2009ZX03003-007
文摘Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.
基金National Natural Science Foundation of China (Grant No. 40072067) and Minister of Science and Technology of China (2004BA601B01).
文摘A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ1 and σ2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may con-tain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.
文摘Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of crucial importance in the credit derivatives market. In this work, we adapt Merton’s [1] original works on credit risk, consumption and portfolio rules to model an individual wealth scenario, and apply it to compute this individual default probabilities. Using our model, we also compute the time depending individual default intensities, recovery rates, hazard rate and risk premiums. Hence, as a straight-forward application, our model can be used as novel way to measure the credit risk of individuals.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.
基金Funded by the National Natural Science Foundation of China(Nos.31172144,51475204)the National Science&Technology Pillar Program of China in the Twelfth Five-Year Plan Period(2014BAD06B03)+1 种基金the Exchange Projects of the Royal Academy of Engineering,UK(Major Award,2010-2011)the "Project 985" of Jilin University
文摘Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
文摘The effect of deformation conditions on dynamic recrystallization behavior of Nb,V,Ti microalloyed high-strength structural steel was investigated via high-temperature single pass reduction tests on a MMS-300 thermomechanical simulator,with mathematical models established for flow stress during hot deformation.The results show that the deformation resistance decreases with the increase of temperature and is in power function relationship with the temperature.Meanwhile,it increases with the increase of strain rate and is in log-log relationship with the strain rate.The dynamic recrystallization activation energy of tested steel was determined to be about 329.55 kJ/mol,295.31 kJ/mol at peak and steady states.The prediction models developed for flow stress indicated that they are in good agreement with experimental results.
文摘In rainfall-runoff modelling, a monthly timescale and an annual one are sufficient for the management of deductions. However, to simulate the flow at a large time-step (annual), we generally precede the use of a model working for a finer time-step (daily) while aggregating the desired outputs. The finest time-steps are considered, apriori, as the most performant. By passing from one time-step to another, and in order to work in the desired time-step (annual) and calculate the potential gains or loss, this article proposed a comparative study between the aggregation method of outputs of a modal working at a finer time step, and a method in which we use a conceived model from the beginning. To ensure this comparative and empirical approach, the choice has been focused on (GRs) models to a daily time-step (GR4J), monthly time step (GR2M) and annual time step (GR1A). The modelling platform used is the same for all three models taking into account the specificities of each one: the same data sample, the same optimization method, and the same function criterion are used during the construction of these models. Due to the moving between these time steps, results show that the best way to simulate the annual flow is to use an appropriate and designed modal initially conceived to this time step. Indeed, this simulation seems to be less effective when using a model at a finer time-step (daily).