期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Electrochemical determination of vitamin C in the presence of uric acid by a novel TiO_2 nanoparticles modified carbon paste electrode 被引量:3
1
作者 Mohammad Mazloum-Ardakani Mohammad Ali Sheikh-Mohseni +2 位作者 Hadi Beitollahi Ali Benvidi Hossein Naeimi 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第12期1471-1474,共4页
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd... The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations. 展开更多
关键词 Ascorbic acid Uric acid TiO2 nanoparticles ELECTROCATALYSIS modified carbon paste electrode
下载PDF
Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol 被引量:1
2
作者 Ali Benvidi Shahriar Jahanbani +1 位作者 Bibi-Fatemeh Mirjalili Reza Zare 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期549-560,共12页
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de... A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples. 展开更多
关键词 modified electrode Electerocatalytic oxidation HYDRAZINE PHENOL Magnetic bar modified carbon paste electrode Fe3O4 nanoparticle
下载PDF
CuO-nanoparticles modified carbon paste electrode for square wave voltammetric determination of lidocaine: Comparing classical and Box–Behnken optimization methodologies 被引量:3
3
作者 Nadereh Rahbar Zahra Ramezani Jamalaldin Ghanavati 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第6期837-842,共6页
In this research, copper oxide nanoparticles modified carbon paste electrode was developed for the voltammetric determination of lidocaine. The square wave voltammogram of lidocaine solution showed a well-defined peak... In this research, copper oxide nanoparticles modified carbon paste electrode was developed for the voltammetric determination of lidocaine. The square wave voltammogram of lidocaine solution showed a well-defined peak between +0.5 and +1.5 V. Instrumental and chemical parameters influencing voltammetric response were optimized by both one at a time and Box–Behnken model of response surface methodology. The results revealed that there was no significant difference between two methods of optimization. The linear range was 1–2500 μmol L^-1(Ip= 0.11 C(LH)+ 17.38, R^2= 0.999). The LOD and LOQ based on three and ten times of the signal to noise(S/N) were 0.39 and 1.3 μmol L^-1(n = 10),respectively. The precision of the method was assessed for 10 replicate square wave voltammetry(SWV)determinations each of 0.05, 0.5 and 1 μmol L^-1 of lidocaine showing relative standard deviations 4.1%,3.7% and 2.1%, respectively. The reliability of the proposed method was established by application of the method for the determination of lidocaine in two pharmaceutical preparations, namely injection and gel. 展开更多
关键词 Square wave voltammetry CuO nanoparticles LIDOCAINE modified carbon paste electrode
原文传递
Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis 被引量:1
4
作者 王秀丽 康振辉 +1 位作者 王恩波 胡长文 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第8期777-783,共7页
A kind of inorganic organic hybrid 18 molybdodiphosphate nanoparticles ([(C 4H 9) 4N] 6P 2Mo 18 O 62 ·4H 2O) was firstly used as a bulk modifier to fabricate a three dimensional chemically modi... A kind of inorganic organic hybrid 18 molybdodiphosphate nanoparticles ([(C 4H 9) 4N] 6P 2Mo 18 O 62 ·4H 2O) was firstly used as a bulk modifier to fabricate a three dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square wave voltammetry. The hybrid 18 molybdodiphosphate nanoparticles bulk modified CPE (MNP CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP CPE over the traditional polyoxometalates modified electrodes are their excellent reproducibility of surface renewal and high stability owing to the insolubility of the hybrid 18 molybdodiphosphate nanoparticles. 展开更多
关键词 molybdodiphosphate nanoparticles inorganic organic hybrid chemically modified carbon paste electrode electrochemical behavior electrocatalytic reduction
原文传递
Homogeneous and nanomolar detection of hydrazine by indigocarmine as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode
5
作者 Mohammad Mazloum-Ardakani Hossein Rajabi Hadi Beitollahi 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第2期213-216,共4页
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry w... The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0^(-8)-7.0×10~6 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples. 展开更多
关键词 Hydrazine Indigocarmine TiO_2 nanoparticles modified electrode carbon paste electrode Nanomolar detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部