Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/kill...Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/killing marine mammals, birds and human). Among the various control strategies for HABs(physical manipulation needs lots of manpower and expensive equipment, chemicals treatment has some toxic byproduct and high residual, microbial agents only has limited in laboratory research), the coagulation-flocculation of HAB species by modified clay(MC) has been proven to be an effective, lowcost and environmentally friendly method that has been widely applied in the field, particularly in eastern Asia. In order to examine the long-term effects of MC treatment, this study investigated the alternations in seawater of Skeletonema costatum, a high biomass dominant HAB species along the Chinese coast, by comparing the degradation of S. costatum detritus(A1) with the application of MC treatment(A2) and MC treatment in sediment condition(A3). The low dosage of 0.25 g/L MC could efficiently remove 4×108 cells/L of S. costatum cells within 3.5 h(approximately 97% removal). In addition, the results showed that both inorganic and organic nutrients were effectively reduced from seawater by MC particles. Compared to the total nitrogen(TN) and total phosphorus(TP) concentrations in A1 seawater, 44% of TN and 93% of TP in A2 seawater, as well as 72% of TN and 93% of TP in A3 seawater were removed during the onemonth incubation period. Simultaneously, 64% of DISi in A2 and 44% of DISi in A3 significantly decreased( P <0.001). This study demonstrated that MC treatment was able to significantly increase the downward flux of nutrients and delay the release velocity of inorganic nutrient from MC-algae matrix into the overlying seawater, particularly within sediment environment.展开更多
Phaeocystis globosa is a harmful algal bloom(HAB)species worldwide.Using modified clay(MC)to control HABs and to mitigate their adverse effects is currently a commonly used method in China.In this paper,the effects of...Phaeocystis globosa is a harmful algal bloom(HAB)species worldwide.Using modified clay(MC)to control HABs and to mitigate their adverse effects is currently a commonly used method in China.In this paper,the effects of oxidized composite modified clay(OXI-MC)on P.globosa were studied from different perspectives.The results show that the OXI-MC could effectively remove P.globosa and inhibit both the growth of residual algal cells and the formation of new colonies.The P.globosa algal biomass removal efficiencies after 3 h reached 90%at a dose of 0.1 g/L,and the number of colonies with different particle sizes was greatly reduced.Compared with those of the control,the superoxide dismutase(SOD)activity,catalase(CAT)activity,and malondialdehyde(MDA)content of the residual algae significantly increased,indicating that OXI-MC caused oxidative stress in the algal cells.In addition,we evaluated the effects of OXI-MC on the photosynthesis of residual microalgae and found that the maximal photochemical efficiency of photosystem II(PSII)under dark adaptation(F v/F m)and actual photochemical efficiency of PSII(ФPSII)decreased,severely damaging the photosynthesis efficiency,implying that OXI-MC effected the photosynthesis system of P.globosa.The results of this study clarify that OXI-MC could remove the most of algal cells and break up the colonies of P.globosa by collision,flocculation,and releasing active substances,as well as inhibit effectively the growth and colony formation of residual P.globosa by causing oxidative stress,reducing photosynthesis activity,accelerating the degradation of polysaccharides,and inhibiting the formation of colonies.展开更多
We present results on the effect of modified clay on cyst formation of Scrippsiella trochoidea in harmful algal bloom (HAB). Modified clay (in concentration of 0, 0.1, 0.5, and 1.0 g/L) were added to cultures, and...We present results on the effect of modified clay on cyst formation of Scrippsiella trochoidea in harmful algal bloom (HAB). Modified clay (in concentration of 0, 0.1, 0.5, and 1.0 g/L) were added to cultures, and observations were made on cysts of S. trochoidea under controlled laboratory conditions. Results indicate that the removal rate of algal cells reached 97.7% at the clay concentration of 1.0 g/L. The cyst formation rate increased from 4.6% to 24.6% when the concentration of clay was increased from 0 to 1.0 g/L. Two cyst metamorphs were observed: spinal calcareous cysts and smooth noncalcareous ones. The proportion of the spinal cysts decreased from 76.9% to 24.1% when clay concentration increased from 0 to 1.0 g/L. In addition, modified clay affected cyst germination. The germination rate decreased with the increases in the clay concentrations. Non-calcareous cysts had a lower germination rate with a longer germination time. We conclude that modified clay could depress algal cell multiplication and promote formation of temporal cysts of S. trochoidea, which may help in controlling HAB outbreaks.展开更多
Microscopic propagules of Ulva species(UMPs)spread on Subei Shoal are believed to play a significant role in the formation of the Yellow Sea green tide.Previous laboratory and ship-based studies indicated that modifie...Microscopic propagules of Ulva species(UMPs)spread on Subei Shoal are believed to play a significant role in the formation of the Yellow Sea green tide.Previous laboratory and ship-based studies indicated that modified clay(MC)can effectively remove UMPs from the water column and restrict their germination.To evaluate the effectiveness of this method under natural conditions,a mesocosm experiment was conducted on the Zhugensha sandbank on Subei Shoal.The results show that the suspended particles on the sandbank would partially disturb the flocculation process between the MC and UMPs.However,the MC at a proper dose could effectively remove UMPs from the water column and decrease the adhesion and germination of UMPs on the nylon ropes that comprised the mariculture rafts by>75%.This method was proven a potential strategy to restrict the initial biomass accumulation of green algae on Subei Shoal.However,field trials in larger time-space scales are still needed to assess the efficiency of this method when used in the open sea.展开更多
Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characteriz...Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.展开更多
An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the inc...An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.展开更多
Modified clay(MC),an effective material used for the emergency elimination of algal blooms,can rapidly reduce the biomass of harmful algal blooms(HABs)via flocculation.After that,MC can still control bloom population ...Modified clay(MC),an effective material used for the emergency elimination of algal blooms,can rapidly reduce the biomass of harmful algal blooms(HABs)via flocculation.After that,MC can still control bloom population through indirect effects such as oxidative stress,whichwas initially proposed to be related to programmedcell death(PCD)at molecular level.To further study theMC induced cell death in residual bloom organisms,especially identifying PCD process,we studied the physiological state of the residual Prorocentrum donghaiense.The experimental results showed that flocculation changed the physiological state of the residual cells,as evidenced by growth inhibition and increased reactive oxygen species production.Moreover,this research provides biochemical and ultrastructural evidence showing that MC induces PCD in P.donghaiense.Nuclear changes were observed,and increased caspase-like activity,externalization of phosphatidylserine and DNA fragmentation were detected in MC-treated groups and quantified.And the mitochondrial apoptosis pathway was activated in both MC-treated groups.Besides,the features of MC-induced PCD in a unicellular organism were summarized and its concentration dependent manner was proved.All our preliminary results elucidate the mechanism through which MC can further control HABs by inducing PCD and suggest a promising application of PCD in bloom control.展开更多
The impact of harmful algal blooms (HABs) on public health and related economics have been increasing in many coastal regions of the world. Sedimentation of algal cells through flocculation with clay particles is a ...The impact of harmful algal blooms (HABs) on public health and related economics have been increasing in many coastal regions of the world. Sedimentation of algal cells through flocculation with clay particles is a promising strategy for controlling HABs. Previous studies found that removal efficiency (RE) was influenced by many factors, including clay type and concentration, algal growth stage, and physiological aspects of HAB cells. To estimate the effect of morphological characteristics of the aggregates on HAB cell removal, fractal dimensions were measured and the RE of three species of HAB organism, Heterosigma akashiwo, Alexandrium tamarense, and Skeletonema eostatum, by original clay and modified clay, was determined. For all HAB species, the modified clay had a higher RE than original clay. For the original clay, the two-dimensional fractal dimension (D2) was 1.92 and three-dimensional ffactal dimension (D3) 2.81, while for the modified clay, D2 was 1.84 and D3 was 2.50. The addition of polyaluminum chloride (PAC1) lead to a decrease of the repulsive barrier between clay particles, and resulted in lower D2 and D3. Due to the decrease of D3, and the increase of the effective sticking coefficient, the flocculation rate between modified clay particles and HAB organisms increased, and thus resulted in a high RE. The fractal dimensions of flocs differed in HAB species with different cell morphologies. For example, Alexandrium tamarense cells are ellipsoidal, and the D3 and D2 of flocs were the highest, while for Skeletonema costatum, which has filamentous cells, the D3 and D2 of flocs were the lowest.展开更多
This document presents a study of the behaviour of a pavement structure on compressible soil and the evaluation of its durability. The objective of this study is to highlight the impact of taking into account the non-...This document presents a study of the behaviour of a pavement structure on compressible soil and the evaluation of its durability. The objective of this study is to highlight the impact of taking into account the non-linear elastic behaviour of soils and granular materials in the design process. To this end, a numerical modelling of the pavement of the beau-rivage-Djassin crossroads section in Porto-Novo was carried out, based on a compressible soil whose behaviour will be considered elastoplastic. The subgrade soil on the section is made up of several sub-layers. The layer of soft, highly plastic clay was modelled according to a modified Cam Clay behaviour, a model of swelling clay soils. The fine sand layer and the granular layers of the structure are modelled according to Mohr-Coulomb behaviour. The loading is considered to be uniformly distributed according to the assumptions of the Burmister model in the French standard. A first verification with ALIZE allowed to validate the structure on the basis of the rutting deformation at the head of the platform ε<sub>z</sub> = 359.6*10<sup>-6</sup> which remains lower than the admissible deformation ε<sub>z</sub><sub>,adm</sub> = 360*10<sup>-6</sup>. The numerical calculation was carried out using the finite element method, the code of which is implemented under the PLAXIS v21 software. A comparative study with the results of the ALIZE design revealed that the numerically calculated strains ε<sub>z</sub> = 585*10<sup>-6</sup> are higher than those of ALIZE. These numerical strains, which are higher than the elastic strains, do not meet the validation criteria that the strains under loading must remain below the allowable strains. An evaluation of the pavement durability was carried out and it was found that the pavement would only last under traffic for 3 years before the first fatigue deformations appeared.展开更多
This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological...This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.展开更多
Arsenic(As)is a known carcinogen and naturally occurring semi-metal in soils and in the Earth's crust.Contamination of soils and water with As poses a serious threat to millions of people worldwide due to its heal...Arsenic(As)is a known carcinogen and naturally occurring semi-metal in soils and in the Earth's crust.Contamination of soils and water with As poses a serious threat to millions of people worldwide due to its health hazards and toxicological properties.Hence,devising novel and efficient methods for remediation of contaminated areas has attracted a great deal of interest across the globe.In this study,we investigated the usefulness of synthetic birnessite,goethite,hexadecylpyridinium chloride-modified montmorillonite(HDPC-M),hexadecylpyridinium bromide-modified zeolite(HDPB-Z),and lanthanum(La)-doped magnetic biochar produced from eucalyptus bark(La-Euchar)as adsorbents at 10%dosage for As stabilization in a soil spiked with 1000 mg kg^(-1)As.The effectiveness of the above adsorbents in As immobilization in soil was assessed using single-step extractions with 2 mol L^(-1)HNO_(3)and deionized water,the simplified bioaccessibility extraction test(SBET)method,and sequential extraction with the modified Community Bureau of Reference(BCR)method.Application of the adsorbents shifted the exchangeable fraction of As to more recalcitrant fractions and dramatically reduced the exchangeable fraction by 6%-99%and the extractable amounts with HNO_(3),deionized water,and SBET method by 30%-92%,17%-95%,and 12%-90%,respectively,compared to the unamended control.The immobilizing effects of adsorbents on As decreased in the sequence of birnessite>La-Euchar>goethite>HDPB-Z>HDPC-M.Birnessite exhibited great affinity for As and drastically reduced As extractability by more than 90%in all single extractions.The results revealed that HDPC-M,HDPB-Z,La-Euchar,birnessite,and goethite are promising immobilizing agents for in situ stabilization of As in terrestrial environments.展开更多
Polyaluminum chloride modified clay(PAC-MC)is a safe and efficient red tide control agent that has been studied and applied worldwide.Although it is well known that the distribution of hydrolytic aluminum species in P...Polyaluminum chloride modified clay(PAC-MC)is a safe and efficient red tide control agent that has been studied and applied worldwide.Although it is well known that the distribution of hydrolytic aluminum species in PAC affects its flocculation,little is known about the influence of particulars aluminum species on the microalgae removal efficiency of PAC-MC;this lack of knowledge creates a bottleneck in the development of more efficient MCs based on aluminum salts.The ferron method was used in this study to quantitatively analyze the distributions of and variations in different hydrolytic aluminum species during the process of microalgae removal by PAC-MC.The results showed that Ala,which made up 5%–20%of the total aluminum,and Alp,which made up 15%–55%of the total aluminum,significantly affected microalgae removal,with Pearson’s correlation coefficients of 0.83 and 0.89,respectively.Most of the aluminum in the PAC-MC sank rapidly into the sediments,but the rate and velocity of settlement were affected by the dose of modified clay.The optimal dose of PAC-MC for precipitating microalgae was determined based on its aluminum profile.These results provide guidance for the precise application of PAC-MC in the control of harmful algal blooms.展开更多
基金Supported by the National Natural Science Foundation of China(No.41276115)the National Basic Research Program of China(973 Program)(No.2010CB428706)the Fund for Creative Research Groups by NSFC(No.41121064)
文摘Harmful algal blooms(HABs) can elicit several negative effects on aquatic environment(such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health(including poisoning/killing marine mammals, birds and human). Among the various control strategies for HABs(physical manipulation needs lots of manpower and expensive equipment, chemicals treatment has some toxic byproduct and high residual, microbial agents only has limited in laboratory research), the coagulation-flocculation of HAB species by modified clay(MC) has been proven to be an effective, lowcost and environmentally friendly method that has been widely applied in the field, particularly in eastern Asia. In order to examine the long-term effects of MC treatment, this study investigated the alternations in seawater of Skeletonema costatum, a high biomass dominant HAB species along the Chinese coast, by comparing the degradation of S. costatum detritus(A1) with the application of MC treatment(A2) and MC treatment in sediment condition(A3). The low dosage of 0.25 g/L MC could efficiently remove 4×108 cells/L of S. costatum cells within 3.5 h(approximately 97% removal). In addition, the results showed that both inorganic and organic nutrients were effectively reduced from seawater by MC particles. Compared to the total nitrogen(TN) and total phosphorus(TP) concentrations in A1 seawater, 44% of TN and 93% of TP in A2 seawater, as well as 72% of TN and 93% of TP in A3 seawater were removed during the onemonth incubation period. Simultaneously, 64% of DISi in A2 and 44% of DISi in A3 significantly decreased( P <0.001). This study demonstrated that MC treatment was able to significantly increase the downward flux of nutrients and delay the release velocity of inorganic nutrient from MC-algae matrix into the overlying seawater, particularly within sediment environment.
基金the National Natural Science Foundation of China(No.41576119)the Taishan Scholars Climbing Program of Shandong Province of 2019+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0504-2)the National Key Research and Development Program of China(No.2017YFC1404300)。
文摘Phaeocystis globosa is a harmful algal bloom(HAB)species worldwide.Using modified clay(MC)to control HABs and to mitigate their adverse effects is currently a commonly used method in China.In this paper,the effects of oxidized composite modified clay(OXI-MC)on P.globosa were studied from different perspectives.The results show that the OXI-MC could effectively remove P.globosa and inhibit both the growth of residual algal cells and the formation of new colonies.The P.globosa algal biomass removal efficiencies after 3 h reached 90%at a dose of 0.1 g/L,and the number of colonies with different particle sizes was greatly reduced.Compared with those of the control,the superoxide dismutase(SOD)activity,catalase(CAT)activity,and malondialdehyde(MDA)content of the residual algae significantly increased,indicating that OXI-MC caused oxidative stress in the algal cells.In addition,we evaluated the effects of OXI-MC on the photosynthesis of residual microalgae and found that the maximal photochemical efficiency of photosystem II(PSII)under dark adaptation(F v/F m)and actual photochemical efficiency of PSII(ФPSII)decreased,severely damaging the photosynthesis efficiency,implying that OXI-MC effected the photosynthesis system of P.globosa.The results of this study clarify that OXI-MC could remove the most of algal cells and break up the colonies of P.globosa by collision,flocculation,and releasing active substances,as well as inhibit effectively the growth and colony formation of residual P.globosa by causing oxidative stress,reducing photosynthesis activity,accelerating the degradation of polysaccharides,and inhibiting the formation of colonies.
基金Supported by the National Natural Science Foundation of China(No.41276115)the Fund for Creative Research Groups by NSFC(No.41121064)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘We present results on the effect of modified clay on cyst formation of Scrippsiella trochoidea in harmful algal bloom (HAB). Modified clay (in concentration of 0, 0.1, 0.5, and 1.0 g/L) were added to cultures, and observations were made on cysts of S. trochoidea under controlled laboratory conditions. Results indicate that the removal rate of algal cells reached 97.7% at the clay concentration of 1.0 g/L. The cyst formation rate increased from 4.6% to 24.6% when the concentration of clay was increased from 0 to 1.0 g/L. Two cyst metamorphs were observed: spinal calcareous cysts and smooth noncalcareous ones. The proportion of the spinal cysts decreased from 76.9% to 24.1% when clay concentration increased from 0 to 1.0 g/L. In addition, modified clay affected cyst germination. The germination rate decreased with the increases in the clay concentrations. Non-calcareous cysts had a lower germination rate with a longer germination time. We conclude that modified clay could depress algal cell multiplication and promote formation of temporal cysts of S. trochoidea, which may help in controlling HAB outbreaks.
基金the AoShan Technological Innovation Program from Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ02-1)the Taishan Scholars Climbing Program of Shandong Province of 2019the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2019SDKJ0504-2).
文摘Microscopic propagules of Ulva species(UMPs)spread on Subei Shoal are believed to play a significant role in the formation of the Yellow Sea green tide.Previous laboratory and ship-based studies indicated that modified clay(MC)can effectively remove UMPs from the water column and restrict their germination.To evaluate the effectiveness of this method under natural conditions,a mesocosm experiment was conducted on the Zhugensha sandbank on Subei Shoal.The results show that the suspended particles on the sandbank would partially disturb the flocculation process between the MC and UMPs.However,the MC at a proper dose could effectively remove UMPs from the water column and decrease the adhesion and germination of UMPs on the nylon ropes that comprised the mariculture rafts by>75%.This method was proven a potential strategy to restrict the initial biomass accumulation of green algae on Subei Shoal.However,field trials in larger time-space scales are still needed to assess the efficiency of this method when used in the open sea.
文摘Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.
基金funded by the German Research Foundation(DFG)(Grant No.NA 330/20e1).
文摘An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.
基金supported by the Taishan Scholars Climbing Program of Shandong Province of 2019,the Special Research Assistant Program of Chinese Academy of Sciences,China Postdoctoral Science Foundation Funded Project(No.2020M672153)the AoShan Talents Cultivation Program from Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-OS16).
文摘Modified clay(MC),an effective material used for the emergency elimination of algal blooms,can rapidly reduce the biomass of harmful algal blooms(HABs)via flocculation.After that,MC can still control bloom population through indirect effects such as oxidative stress,whichwas initially proposed to be related to programmedcell death(PCD)at molecular level.To further study theMC induced cell death in residual bloom organisms,especially identifying PCD process,we studied the physiological state of the residual Prorocentrum donghaiense.The experimental results showed that flocculation changed the physiological state of the residual cells,as evidenced by growth inhibition and increased reactive oxygen species production.Moreover,this research provides biochemical and ultrastructural evidence showing that MC induces PCD in P.donghaiense.Nuclear changes were observed,and increased caspase-like activity,externalization of phosphatidylserine and DNA fragmentation were detected in MC-treated groups and quantified.And the mitochondrial apoptosis pathway was activated in both MC-treated groups.Besides,the features of MC-induced PCD in a unicellular organism were summarized and its concentration dependent manner was proved.All our preliminary results elucidate the mechanism through which MC can further control HABs by inducing PCD and suggest a promising application of PCD in bloom control.
基金Supported by the Fund for Creative Research Groups by National Natural Science Foundation of China (No. 40821004)the National Natural Science Foundation of China (No. 40906055)the National Basic Research Program of China (973 Program) (No. 2010CB428706)
文摘The impact of harmful algal blooms (HABs) on public health and related economics have been increasing in many coastal regions of the world. Sedimentation of algal cells through flocculation with clay particles is a promising strategy for controlling HABs. Previous studies found that removal efficiency (RE) was influenced by many factors, including clay type and concentration, algal growth stage, and physiological aspects of HAB cells. To estimate the effect of morphological characteristics of the aggregates on HAB cell removal, fractal dimensions were measured and the RE of three species of HAB organism, Heterosigma akashiwo, Alexandrium tamarense, and Skeletonema eostatum, by original clay and modified clay, was determined. For all HAB species, the modified clay had a higher RE than original clay. For the original clay, the two-dimensional fractal dimension (D2) was 1.92 and three-dimensional ffactal dimension (D3) 2.81, while for the modified clay, D2 was 1.84 and D3 was 2.50. The addition of polyaluminum chloride (PAC1) lead to a decrease of the repulsive barrier between clay particles, and resulted in lower D2 and D3. Due to the decrease of D3, and the increase of the effective sticking coefficient, the flocculation rate between modified clay particles and HAB organisms increased, and thus resulted in a high RE. The fractal dimensions of flocs differed in HAB species with different cell morphologies. For example, Alexandrium tamarense cells are ellipsoidal, and the D3 and D2 of flocs were the highest, while for Skeletonema costatum, which has filamentous cells, the D3 and D2 of flocs were the lowest.
文摘This document presents a study of the behaviour of a pavement structure on compressible soil and the evaluation of its durability. The objective of this study is to highlight the impact of taking into account the non-linear elastic behaviour of soils and granular materials in the design process. To this end, a numerical modelling of the pavement of the beau-rivage-Djassin crossroads section in Porto-Novo was carried out, based on a compressible soil whose behaviour will be considered elastoplastic. The subgrade soil on the section is made up of several sub-layers. The layer of soft, highly plastic clay was modelled according to a modified Cam Clay behaviour, a model of swelling clay soils. The fine sand layer and the granular layers of the structure are modelled according to Mohr-Coulomb behaviour. The loading is considered to be uniformly distributed according to the assumptions of the Burmister model in the French standard. A first verification with ALIZE allowed to validate the structure on the basis of the rutting deformation at the head of the platform ε<sub>z</sub> = 359.6*10<sup>-6</sup> which remains lower than the admissible deformation ε<sub>z</sub><sub>,adm</sub> = 360*10<sup>-6</sup>. The numerical calculation was carried out using the finite element method, the code of which is implemented under the PLAXIS v21 software. A comparative study with the results of the ALIZE design revealed that the numerically calculated strains ε<sub>z</sub> = 585*10<sup>-6</sup> are higher than those of ALIZE. These numerical strains, which are higher than the elastic strains, do not meet the validation criteria that the strains under loading must remain below the allowable strains. An evaluation of the pavement durability was carried out and it was found that the pavement would only last under traffic for 3 years before the first fatigue deformations appeared.
文摘This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.
文摘Arsenic(As)is a known carcinogen and naturally occurring semi-metal in soils and in the Earth's crust.Contamination of soils and water with As poses a serious threat to millions of people worldwide due to its health hazards and toxicological properties.Hence,devising novel and efficient methods for remediation of contaminated areas has attracted a great deal of interest across the globe.In this study,we investigated the usefulness of synthetic birnessite,goethite,hexadecylpyridinium chloride-modified montmorillonite(HDPC-M),hexadecylpyridinium bromide-modified zeolite(HDPB-Z),and lanthanum(La)-doped magnetic biochar produced from eucalyptus bark(La-Euchar)as adsorbents at 10%dosage for As stabilization in a soil spiked with 1000 mg kg^(-1)As.The effectiveness of the above adsorbents in As immobilization in soil was assessed using single-step extractions with 2 mol L^(-1)HNO_(3)and deionized water,the simplified bioaccessibility extraction test(SBET)method,and sequential extraction with the modified Community Bureau of Reference(BCR)method.Application of the adsorbents shifted the exchangeable fraction of As to more recalcitrant fractions and dramatically reduced the exchangeable fraction by 6%-99%and the extractable amounts with HNO_(3),deionized water,and SBET method by 30%-92%,17%-95%,and 12%-90%,respectively,compared to the unamended control.The immobilizing effects of adsorbents on As decreased in the sequence of birnessite>La-Euchar>goethite>HDPB-Z>HDPC-M.Birnessite exhibited great affinity for As and drastically reduced As extractability by more than 90%in all single extractions.The results revealed that HDPC-M,HDPB-Z,La-Euchar,birnessite,and goethite are promising immobilizing agents for in situ stabilization of As in terrestrial environments.
基金supported by the National Natural Science Foundation of China(No.41976145)the Taishan Scholars Climbing Program of Shandong Province of 2019+1 种基金the Science and Technology Major Project of Guangxi(No.AA17202020-4)。
文摘Polyaluminum chloride modified clay(PAC-MC)is a safe and efficient red tide control agent that has been studied and applied worldwide.Although it is well known that the distribution of hydrolytic aluminum species in PAC affects its flocculation,little is known about the influence of particulars aluminum species on the microalgae removal efficiency of PAC-MC;this lack of knowledge creates a bottleneck in the development of more efficient MCs based on aluminum salts.The ferron method was used in this study to quantitatively analyze the distributions of and variations in different hydrolytic aluminum species during the process of microalgae removal by PAC-MC.The results showed that Ala,which made up 5%–20%of the total aluminum,and Alp,which made up 15%–55%of the total aluminum,significantly affected microalgae removal,with Pearson’s correlation coefficients of 0.83 and 0.89,respectively.Most of the aluminum in the PAC-MC sank rapidly into the sediments,but the rate and velocity of settlement were affected by the dose of modified clay.The optimal dose of PAC-MC for precipitating microalgae was determined based on its aluminum profile.These results provide guidance for the precise application of PAC-MC in the control of harmful algal blooms.