Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuit...Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuits for RF CMOS LNA and design methodology, the noise from the device is decreased across the ultra wide band (UWB) band. The measured noise figure is 2.66 3 dB over 3.1 10.6-GHz, while the power gain is 14 ± 0.8 dB. It consumes 23.7 mW from a 1.8 V supply. The input and output return losses (S11 & S22) are less than –11 dB over the UWB band. By using the modified derivative superposition method, the third-order intercept point IIP3 is improved noticeably. The complete circuit is based on the 0.18 μm standard RFCMOS technology and simulated with Hspice simulator.展开更多
In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method i...In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.展开更多
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For thi...In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the non- linear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.展开更多
Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Bur...Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13.展开更多
The paper deals with the obliquely propagating wave solutions of fractional nonlinear evolution equations(NLEEs)arising in science and engineering.The conformable time fractional(2+1)-dimensional extended Zakharov-Kuz...The paper deals with the obliquely propagating wave solutions of fractional nonlinear evolution equations(NLEEs)arising in science and engineering.The conformable time fractional(2+1)-dimensional extended Zakharov-Kuzetsov equation(EZKE),coupled space-time fractional(2+1)-dimensional dispersive long wave equation(DLWE)and space-time fractional(2+1)-dimensional Ablowitz-Kaup-Newell-Segur(AKNS)equation are considered to investigate such physical phenomena.The modified Kudryashov method along with the properties of conformable and modified Riemann-Liouville derivatives is employed to construct the oblique wave solutions of the considered equations.The obtained results may be useful for better understanding the nature of internal oblique propagating wave dynamics in ocean engineering.展开更多
′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func...′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.展开更多
文摘Low noise amplifier (LNA) performs as the initial amplification block in the receive path in a radio frequency (RF) receiver. In this work an ultra-wideband 3.1 10.6-GHz LNA is discussed. By using the proposed circuits for RF CMOS LNA and design methodology, the noise from the device is decreased across the ultra wide band (UWB) band. The measured noise figure is 2.66 3 dB over 3.1 10.6-GHz, while the power gain is 14 ± 0.8 dB. It consumes 23.7 mW from a 1.8 V supply. The input and output return losses (S11 & S22) are less than –11 dB over the UWB band. By using the modified derivative superposition method, the third-order intercept point IIP3 is improved noticeably. The complete circuit is based on the 0.18 μm standard RFCMOS technology and simulated with Hspice simulator.
文摘In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenvalue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a direct solution method in computational linear algebra. We apply our proposed formula to a technique used in nonlinear finite-element methods and discuss methods for determining singular points, such as bifurcation points and limit points. In our proposed method, the increment in arc length (or other relevant quantities) may be determined automatically, allowing a reduction in the number of basic parameters. The method is particularly effective for banded matrices, which allow a significant reduction in memory requirements as compared to dense matrices. We discuss the theoretical foundations of our proposed method, present algorithms and programs that implement it, and conduct numerical experiments to investigate its effectiveness.
文摘In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equa- tion are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the non- linear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
文摘Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13.
文摘The paper deals with the obliquely propagating wave solutions of fractional nonlinear evolution equations(NLEEs)arising in science and engineering.The conformable time fractional(2+1)-dimensional extended Zakharov-Kuzetsov equation(EZKE),coupled space-time fractional(2+1)-dimensional dispersive long wave equation(DLWE)and space-time fractional(2+1)-dimensional Ablowitz-Kaup-Newell-Segur(AKNS)equation are considered to investigate such physical phenomena.The modified Kudryashov method along with the properties of conformable and modified Riemann-Liouville derivatives is employed to construct the oblique wave solutions of the considered equations.The obtained results may be useful for better understanding the nature of internal oblique propagating wave dynamics in ocean engineering.
文摘′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.