Based on the modified homotopy perturbation method (MHPM), exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact...Based on the modified homotopy perturbation method (MHPM), exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact solutions. Under suitable initial conditions, the PDE is transformed into an ODE. Some illustrative examples reveal the efficiency of the proposed method.展开更多
In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial condit...In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.展开更多
基金Supported by the National Social Science Fund of China (Grant No. 11BTJ011)the Natural Science Foundation Fund of Hunan Province of China (No. 08JJ3004)the Soft Science Foundation of Hunan Province of China (No. 2009ZK4021)
文摘Based on the modified homotopy perturbation method (MHPM), exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact solutions. Under suitable initial conditions, the PDE is transformed into an ODE. Some illustrative examples reveal the efficiency of the proposed method.
文摘In this paper motion of rigid rod on a circular surface is studied analytically.A new analytical method called modified homotopy perturbation method(MHPM)is applied for solving this problem in different initial conditions to show capability of this method.The goveming equation for motion of a nigid rod on the circular surface without slipping have been solved using MHPM.The efficacy of MHPM for handling nonlinear oscillation systems with various small and large oscillation amplitudes are presented in comparison with numerical benchmarks.Outcomes reveal that MHPM has an excellent agreement with numerical solution.The results show that by decreasing the oscillation amplitude,the velocity of rigid rod decreases and for A=w3 the velocity profile is maximum.